AWG Comments on FpML Differences with ISO XML

FpML Architecture Working Group

Editor: Andrew Jacobs (chair)

2004-10-15

The ISO/SWIFT/FpML meeting to discuss the mapping of the vanilla interest rate swap document some technical differences between the two XML design styles. This provides the FpML AWG opinion on these differences.

ISO XML uses two solutions to representing code values, namely:
· As a list of codes embedded within the schemas as an "enumeration"
· As text values (possibly with a constraining pattern) validated post XML parsing.
Since the migration to XML schema in FpML 4.0, the FpML grammar makes use of enumerations for code lists where they are appropriate and maintains its ‘scheme’ based mechanism where it is not. As with ISO XML values, FpML schemes are validated post XML parsing by an implementation defined mechanism.
In the ISO approach the grammar (via the data dictionary) defines a set of standard elements to hold code values (e.g. <BIC>, <BEI>, <ccy>, etc.). The presence of the element implies the use of a specific code list for validation.

In the FpML approach the grammar defines a standard element that will hold an identifier for a given business object type (e.g. <partyId>, <tradeId>, <currency>, etc.) and a separate qualifying URI indicates the code list to be used for validation. FpML defines some standard URIs (and documents the associated code values).

The AWG feels that FpML’s solution is technically superior to ISO XML’s solution, specifically:
· The qualifying URI can contain a date or version number to indicate point of time (e.g. pre-Euro currencies vs. post-Euro currencies, change of regulation, etc.). This information can not be determined in an ISO XML instance, it is held in the data dictionary.
· A new code list can be substituted without and changes needing to be made to the FpML XML schema. In ISO XML adding an alternate code value would mean added a new element and extending the grammar.
ISO XML uses 4 character code enumerated values
FpML does not constrain the size of code values in schemes or enumeration and typically they are based on common market conventions or legal documentation.

The adoption of short codes could impact severely on the readability of some sets of code values. For example many day count fractions codes are very similar (e.g. ACT/ACT.ISDA, ACT/ACT.ISMA, ACT/ACT.AFB, 30/360, 30E/360, etc.) and compressing them into 4 characters would make them unreadable.

ISO XML uses abbreviations to shorten element names

FpML has always followed the ISDA defined legal names for its data so that its instances are easy to interpret. The use of abbreviations may slightly speed up XML parsing and reduce the size of UTF or ASCII encoded XML instance documents but at the cost of readability.

The following graph shows the results of a quick test
 performed on a set of test data files contain 1,000 elements and where the element identifier was increased from 1 to 40 characters in steps of (around) 5 characters.

[image: image1.emf]0

10

20

30

40

50

60

70

80

90

100

1 5 10152025303540

File Size

(KB)

Files/sec

Data/sec

(MB)

The same tests where run with the number of elements increased to 10,000 to create much bigger test files.

[image: image2.emf]0

1

2

3

4

5

6

7

8

9

1 5 10152025303540

File Size

(MB)

Files/sec

Data/sec

(MB)

As the length of the identifier increases the number of files processed per second decreases, not altogether surprising as the files become bigger and take longer to read.
If we assume that using abbreviations reduces a 25 character identifier to 10 then the maximum increase in speed is 8.8% for small files and 13.2% for large files. Given that in reality our XML files already contain a mixture of short and long identifiers and that only a subset of the current names could sensibly be abbreviated, the real percentage the processing speed improvement and space reductions will be much smaller, probably <1.1%.for typical FpML size files
. With such small files other factors like the time the operating system takes to open a file, or the resolution of the schema reference become a significant factor in the overall XML parsing time outweighing any savings generated by the abbreviation.
For some time the W3C has been looking into alternative representations for XML which both address parsing speed and document size. At some point binary XML transfer will become a standard feature of SOAP/Web Services implementations. In the short term unless there is a proven case for optimisation at the grammar level we would recommend not compromising the design just to squeeze out a few bytes.
FpML takes a neutral view in terms of 'direction', i.e. there is no viewpoint as to party (sender or receiver). Rather, explicit roles are identified as in a contract. In this case, both a sending confirmation and receiving confirmation would be identical, rather than ''mirror images''. In ISO, messages are usually built from a sender's viewpoint.

There are two issues in this statement:
1. Neutral view is a fundamental principle of FpML design and means that a transaction should look pretty much the same regardless of however creates the document (only minor details like the order of the legs should differ), as is the case of the legal documentation used for OTC products today. This approach makes it easier to compare and match transactions and many message responses can be constructed by simply copying the product portion from the request without alteration.
2. Derivatives are often traded as part of a structured product consisting of several individual transactions. A party may take on a different role in each of the transactions (e.g. buyer in one, seller in another, etc.). Hence role cannot be a direct property of the party, rather it is a property of the party’s association with a product. The problem is made even worse when portfolios of transactions are considered.
Had SWIFT begun their modelling with derivatives then the separation of party and responsibility would have appeared in their model on day one but because they started with simpler securities and payment messages the need for this was not identified. This kind of problem occurs all the time in data modelling when the scope of the model is increased and previously held assumptions break.

The AWG believes that to successfully integrate all but the very simplest of derivatives products SWIFT will have to extend their model to cover this concept. We recognize that this could have implications on all of the modelling done to date.
FpML uses intra-document association (via ID/IDREF links) to relate information in different parts of the document.

There are five separate uses for intra-document links in FpML documents:
1. They allow the re-use of a set of common declaration like business day calendars. This style of usage could be removed from the model with little impact.

2. They allow product life cycle events to be anchored to a particular schedule defined by one part of a product. This would require extensive modelling to remove.
3. To allow some product variants to reference a notional amount defined elsewhere in the product structure.

4. They record associations between business objects (like party and product) without the need for duplication of data.

5. They (partially)
 ensure the integrity of cross-references within document.

In the ISO model a message typically represents a single simple transaction between a small number of parties. Typically the information describing each party occurs only once in the message. When you compare this to a complex derivative where party information is needed describe each financial obligation (or supporting role) that comprises the product as a whole. If party had to be described each time there would be an excessive amount of duplication. Even more so when portfolios are considered. As a result FpML adopted a flexible and efficient intra-document linking mechanism to keep document contents manageable.

The AWG believes that the ISO model will not be able to efficiently represent complex derivatives, structured products or portfolios until its model in extended to support such links. Again the addition of this feature may impact existing modelling.

FpML uses a mixed Upper camel case for types and lower camel case of element names. ISO 20022 uses Upper camel case for both.
Some of the original designers of FpML had an object oriented programming background and knew from experience that it is better to differentiate between class (type) and instance (element) identifiers.
We prefer the distinction that our convention gives but don’t consider it a sticking point to moving to ISO XML.

FpML does not use constraining facets on data containing elements. ISO makes greater use of datatypes with constraining facets.
The first three releases of FpML were DTD based and DTD’s did not support constraining facets. Now that FpML uses XML schema the product working groups should be encouraged to make greater used of facets to restrict the following:

· The length and precision of decimal values

· The minimum and maximum length of strings

ISO has several different options for identifying a party - either by a specified type of identifier, a proprietary name, or name and address (structured or unstructured). In FpML, an identifier does not need to be specified as proprietary. There is a concern about how it is determined that a specific identifier list is proprietary or defined.
The FpML description of parties is very simple. A working group proposed an extended definition a few years back but the as we had no concrete requirement for the additional information it was not implemented.

The current model supports official and propriety identifiers (via the scheme URI) but does not support addresses.

� A validating DOM parse using Xerces 2.6.2 and JDK 1.4.2 on a 2.2 GHz IBM PC compatible with 1GB of RAM.

� Based on the example files a typical FpML swap is approx, 10K and contains about 120-150 elements. This is 1/8 of the number of elements in the test cases therefore the savings are likely to be 8.8% / 8 = 1.1% on average.

� The XML parser ensures that every IDREF matches a defined ID value. This can be enhanced with XML schema key/keyref declarations to ensure that the ID refers to the correct element type. This feature is not yet used in FpML.

� For example security buy/sell messages might need redefinition to allow them to be used in conjunction with interest rate swaps to build asset swap products.

Copyright © 2004. International Swaps and Derivatives Association, Inc. All rights reserved.

_1158482817

_1158479505

