AWG Response to

‘The Case against Type Substitution’

February 2006

Introduction

In 2005 Ira Fuchs wrote a paper entitled ‘The Case Against Type Substitution’ which criticises the architecture of FpML for it’s use of complex types as the basis for its structural design. The paper argues that this style of design is not good XML practice, is not used by other standards bodies (such as FIXML, SWIFT and ACORD) and is not easily to implement. It suggests that an approach based on global element and attributes is more appropriate.

The AWG apologizes for not responding earlier to Mr Fuchs’ paper but has limited resources and had more urgent problems to solve before it could turn its attention to the paper.

‘The Case against Type Substitution’?

Firstly and foremost the AWG would like to correct the terminology used in the title and opening sections of this paper.

‘Type Substitution’ is a feature of XML schema that allows an instance document to override the type associated with an element and to replace it with another (provided that there is an inheritance relationship between the two types). Such overriding allows the document to change the expected content of an element.

<someElement xsi:type=”NewType”>
 … New content here
</someElement>

The only place where FpML uses type substitution is in its messaging framework. An FpML document overrides the type of the FpML element to change the content model so that it matches the requirements of a specific message type (as shown below). Type substitution has also been used by a number of third parties in their extensions to FpML to extend the definition of standard types for their own purposes.

<FpML version=”4.2” … xsi:type=”RequestTradeConfirmation”>
 … Message specific content here
</FpML>

What Mr Fuchs is in fact referring to is FpML’s use of an XML schema design pattern commonly called ‘Venetian Blind’ in which the structure of a schema is defined using global complex types containing locally defined elements and attributes, for example:

<xsd:complexType name="AdjustableDate">
 <xsd:sequence>
 <xsd:element name="unadjustedDate" type="IdentifiedDate"/>
 <xsd:element name="dateAdjustments" type="BusinessDayAdjustments"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

The paper suggests that this style is not the most appropriate one for the meta-data for a complex standard. It suggests instead that both types and element should both be global, a pattern that is referred to as ‘Salami Slice’ and in which the preceding definition would appear as follows.

<xsd:complexType name="AdjustableDate">
 <xsd:sequence>
 <xsd:element ref="unadjustedDate"/>
 <xsd:element ref="dateAdjustments"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

<xsd:element name="unadjustedDate" type="IdentifiedDate"/>
<xsd:element name="dateAdjustments" type="BusinessDayAdjustments"/>

The ‘Salami Slice’ pattern replicates the features of the original XML ‘Document Type Definition’ (DTD) language and is often used by those who are looking for a quick transition from old DTD based grammars to an identical XML schema representation. Indeed the first non-normative translation of the FpML 3.0 DTD into schema used exactly this approach and was subsequently changed in FpML 4.0.

The paper asserts that this style of schema design is not used by other XML standards but this too is incorrect. Two of those referenced by Mr Fuchs are based on the same pattern as FpML, namely:

· FIXML 4.4 and later are based on XML schema and uses the Venetian blind pattern. FIXML uses element and attributes groups (both containing locally definitions) to construct global complex types. For example:

<xs:complexType name="OrderStatusRequest_message_t" final="#all">
 <xs:complexContent>
 <xs:extension base="Abstract_message_t">
 <xs:sequence>
 <xs:group ref="OrderStatusRequestElements"/>
 </xs:sequence>
 <xs:attributeGroup ref="OrderStatusRequestAttributes"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
The only global elements in FIXML are those used as root elements for different message types.

· ISO20022 (SWIFT) uses the Venation blind pattern as can be seen in this extract from one of the published payments initiation messages.

<xs:complexType name="PaymentInformation6">
 <xs:sequence>
 <xs:element name="ReqdExctnDt" type="ISODate"/>
 <xs:element name="PmtMtdByFrstAgt" type="PaymentMethod1Code"/>
 <xs:element name="CdtTrfTpId" type="CreditTransferTypeIdentification" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Dbtr" type="PartyIdentification1" minOccurs="0" maxOccurs="1"/>
 <xs:element name="DbtrCtryOfRes" type="CountryCode" minOccurs="0" maxOccurs="1"/>
 <xs:element name="DbtrAcct" type="CashAccount3"/>
 <xs:element name="FrstAgt" type="BranchAndFinancialInstitutionIdentification"/>
 <xs:element name="ChrgsAcct" type="CashAccount3" minOccurs="0" maxOccurs="1"/>
 <xs:element name="ChrgsAcctAgt" type="BranchAndFinancialInstitutionIdentification" minOccurs="0" maxOccurs="1"/>
 <xs:element name="PmtTx" type="GenericPaymentTransaction3" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Mr Fuchs is correct in stating that ACORD standard uses a ‘Salami Slice’ pattern, although it uses local attributes rather than global ones. The following extract is taken from one of the TXLife schemas published in September 2005.

<xsd:complexType name="ChangeSubType_Type">
 <xsd:sequence>
 <xsd:element ref="ChangeSubTypeKey" minOccurs="0" />
 <xsd:element ref="ChangeSubTypeSysKey" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element ref="ChangeTC" minOccurs="0" />
 <xsd:element ref="TranContentCode" minOccurs="0" />
 <xsd:element ref="ChangeBasedOn" minOccurs="0" />
 <xsd:element ref="ElementName" minOccurs="0" />
 <xsd:element ref="ChangeComment" minOccurs="0" />
 <xsd:element ref="OLifEExtension" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" />
 <xsd:attribute name="ChangeID" type="xsd:IDREF" />
 <xsd:attribute name="OriginalObjectID" type="xsd:IDREF" />
 <xsd:attribute name="DataRep" type="DATAREP_TYPES" />
</xsd:complexType>
A designer’s preference for one design style or the other depends on the characteristics that she wants the resulting schema to exhibit. Take reusability for example, in the Salami Slice model reusability is based on element reuse, where as in the Venetian blind it is based on reuse of types.

Where the same content pattern is required in multiple times for different roles the Salami Slice pattern leads either the introduction of container elements (to differentiate between each role) or multiple global elements having exactly the same content model and differing only in name. With the Venetian Blind pattern the same type is used to define as many local elements as needed. In FpML some of the common types are used many times over, for example RelativeDateOffset is used to define 14 elements within the schema all with different names which reflect their specific usage and relate them back to the legal terms in the ISDA documentation from which they derive. Using the same element name multiple times would not achieve the same legal clarity.

The use of global definition itself can be a problem is a large grammar. Once a global element is defined its name implies a particular content model wherever it is referenced but frequently (and especially in finance) the same ‘name’ can have different definitions depending on context (e.g. rate, price, etc.). To allow these nuances to be supported by the model local definition is more favourable.

Additionally XML schema allows any global element defined within a schema to be the root node of a conforming document. In a predominately global schema a validating XML document may contain just an element that is normally expected within a more complex structure. Applications must be coded more defensively to deal with such cases and two implementations (e.g. done by different banks) may not behave identically to the same document creating spurious errors in inter-bank communications.

By using the ‘Venetian Blind’ pattern FpML ensures that a validating XML document is more likely to be exactly what is expected by reducing the number of entry points. Ideally FpML would have only one global element but the ‘substitution group’ feature of XML schema also relies on the presence of global element so for the time being FpML has a small number of eligible global elements.

Implementation Characteristics

On the implementation front the main tools used across the industry for processing FpML, and XML in general, are XSLT processors (such as Xalan), XML parsers (such as Xerces, Microsoft .Net and MSXML) and code generators (such as CASTOR).

For an application using an XML parser it does not matter if the grammar used local or global definitions the resulting DOM tree structure will be identical (except possibly for the qualifying namespaces). The role of the grammar is only to support validation and to ensure that the document has the correct overall structure. This still leaves plenty of scope for the document to be semantically incorrect due to bad business data.

XSLT is based on the matching of XPath expressions against the DOM tree generated by parsing an XML document so for them too the style of the schema is irrelevant. XPath 1.0 expressions navigate the tree based on element hierarchies, attributes and text values. In XPath 2.0 the expressions can be written to make additional use of type information making access reused types more efficient than is currently possible.

The dominant programming languages in use today are object oriented (e.g. Java, C#, C++) and model the problem domain as a set of types contain locally defined data members. For a code generator like CASTOR the ‘Venetian Blind’ pattern is the natural representation of information but they can just as easily be derived from the ‘Salami Slice’ pattern. Where code generators do have problems with XML schema is with the features which do not have a direct OO parallel such as inheritance by restriction and ‘any’ elements. Type substitution is directly equivalent to ‘polymorphism’ and is one of the fundamental building blocks of OO theory and practice.

ISDA is aware of a number of applications that difficulty supporting FpML. In all cases this is because these products do fully support all the features of XML schema, rather they ‘cherry pick’ the bits they want and neglect others. In the opinion of the AWG this is a tool problem and should be taken up with the vendor. A truly XML schema compliant tool supports all the features and will process FpML without issue.

Extension Characteristics

Contrary to Mr Fuchs remarks extensibility is an important characteristic for FpML users. Many FpML implementers are using the standard to increase their internal ‘straight through processing’ capability using our grammar as a starting point. For these institutions the ability to extend or modify the grammar to carry additional internal information is critical.

He is correct in suggesting that substitution groups do play an important role in defining extensions but it is also important to note that the mechanism only works when the substituting elements also match XML schemas type compatibility constraints.

The AWG is less convinced that the ‘any’ facility is correct solution under any circumstances. The ability to insert any payload into a document may be appropriate for some (generic communication) problems but the bulk of FpML documents describe legally binding contracts that need to be fully comprehended by the all parties involved least they expose themselves to risk unnecessarily.

Conclusion

The AWG does not believe that there is a substantial difference between the capabilities two approaches and the paper overstates the case for the ‘Salami Slice’ modelling style. The decision for FpML to move away from the ‘Salami Slice’ pattern was taken because it was seen that the ‘Venetian Blind’ pattern a better means to describe data in a domain where terminology in often market specific and needs to be closely related to contractual definitions.

Going forward the AWG believes that the ‘Venetian Blind’ pattern offers technical advantages over ‘Salami Slice’ in the presence of multiple namespaces.

Standards groups that have traditionally produced data dictionaries of fields and structures or have a large catalogue of DTD based models will tend to prefer the ‘Salami Slice’ approach. Those that have more object-oriented origins will probably be more familiar with the idea of types and follow the same path as FpML, for example ISO 20022.

The AWG believes that many of Mr Fuchs arguments are the result of problems that he experienced using a tool that did not provide full XML schema support. We do not believe this is reason enough to abandon out current style given than many others institutions and third parties have successfully implemented solutions based on more appropriate technology.

Copyright © 2006. International Swaps and Derivatives Association, Inc.

