[image: image1.png]FpML

Technical Note: Versioning

Abstract:

The FpML specification changes over time as new asset classes are added to the standard and as improvements and modifications are made to the existing ones. Currently, FpML schema definitions do not include enough versioning information to enable the information systems in the organizations using FpML to automatically determine if an instance document can be processed.

This technical note discusses the requirements for a versioning scheme for the purposes of FpML. The versioning scheme should enable the schema designers to assign meaningful version numbers to the schema definitions to indicate any change in the specification, including small bug fixes; it should provide support for independent product development, i.e. asset classes; and it should do so at an appropriate level of granularity.

We also analyze the kinds of change that can occur in an FpML schema (extension, refinement, reinterpretation, removal, and redefinition) and how they impact the FpML processors and the instance documents.

Finally, we describe a mechanism that, by means of a version descriptor included in the XML Schema definition, captures the compatibility relationship between FpML schemas and among the sub-schemas that compose a single FpML schema. Furthermore, we propose three algorithms that use the version descriptor to determine if an instance document can be processed.
This version:

http://www.fpml.org/spec/tech-note-versioning-fpml-3-0-2002-09-13
Latest version:

http://www.fpml.org/spec/tech-note-versioning
Copyright © 2002. All rights reserved.

Financial Products Markup Language is subject to the FpML Public License.

A copy of this license is available at http://www.fpml.org/license/license.html.

Status of this Document:

The Architecture Working Group has produced this technical note as part of the FpML Version 3.0 activity to identify the issues relating to the management and versioning of a complex evolving XML schema. It is not part of the formal FpML specification, but includes additional information that may help implementers to produce reliable and robust FpML based systems.

The FpML Consortium invites implementation feedback and/or review comments on this document and subject area. Comments should be sent via the FpML website at: http://www.fpml.org/issues
. Please report each issue separately.

Authors

	Kulbir Arora
	– Goldman Sachs & Co.

	Tom Carroll
	– UBS Warburg

	Igor Dayen
	– Object Centric Solutions

	Daniel Dui
	– University College London

	Andrew Jacobs
	– IBM

	Rajeev Kotyan
	– IONA

	Ned Micelli
	– Reuters

Contributors

	James Battle
	– Ironbark Ltd.

	David Slight
	– Microsoft

Structure of this Document:

Section 1 of this document describes the current state of versioning in FpML and lays out the case as to why versioning is important.

Section 2 describes versioning requirements.

Section 3 provides the background analysis that rationalizes the proposed solution.

 After defining a common vocabulary of terms, Section 4 describes a proposed versioning approach in detail, including a schema implementation and processing algorithms. Readers uninteresting in the full analysis may skip to this section in order to consider the proposed versioning approach.

Section 5 concludes this document with FAQs.

Table of Contents

71
Introduction

1.1
Current FpML Versions
7
1.2
Current Versioning Discipline
7
1.3
How the Current Versioning Scheme Impacts Users of the FpML Standard
7
2
On Versioning
9
2.1
“FpML processors” versus XML processors
9
2.2
Versioning Requirements
9
3
Analysis
11
3.1
Processor vs. Instance Document Version Change Impact
11
3.2
Kinds of changes that versions may contain
11
4
Proposed Versioning Approach
15
4.1
Definitions
15
4.2
General Description
17
4.3
Assumptions and Initial Conditions
17
4.4
Describing a Version
19
4.5
Implementation in Schemas
21
4.6
Processing Algorithms
23
5
FAQ
26
5.1
If one sub-schema is incompatible, does that make the overall version incompatible?
26
5.2
Must a processor fully interpret all versioning compatibility and dependency data?
26
5.3
Is it realistic to plan to track all these changes? Isn’t this going to be too complicated?
26
5.4
How can a processor detect what sub-schemas are present in an instance document?
26
5.5
If older processors are kept around and activated by a “switch”, why would you ever use the current processor to process an older document?
27
5.6
Wouldn’t versioning granularity at the element level be useful?
27
5.7
Should the FpML version number change if the means of defining the grammar changes, but the grammar itself does not change?
27

1 Introduction

1.1 Current FpML Versions

To date, FpML has published three major versions of the standard: the first being the original FpML 1.0 recommendation, the second, FpML 2.0, is a trial recommendation, and the third, FpML 3.0, is a recently published working draft which incorporates FX and equity derivative products.

1.2 Current Versioning Discipline

Currently, versions are changed each time a new working group is created. Working groups are typically chartered with adding new product types (asset classes) to the FpML standard. There is no technical reason why the major version has been changed for each working group. Rather, it appears that the decision to change the version say from 1.0 to 2.0 was done simply to distinguish the work achieved between the two groups. Changing the version from 2.0 to 3.0 to account for the addition of the FX products seems a bit more warranted since the FX instruments were not supported in the previous versions of the standard.

Currently, each major version of the FpML standard undergoes a series of revisions as the version is refined and ultimately released to the public. The most notable revisions during the creation process are the transition from working draft to trial recommendation to final recommendation. In these cases, the version number of the given release remains the same for all revisions; however the date of the actual DTD file will typically change from revision to revision. This date will be reflected in the URI used to identify the version’s DTD.

1.3 How the Current Versioning Scheme Impacts Users of the FpML Standard

Large organizations, institutions, vendors, and end users of the FpML standard must specify a version of the standard with which they are working to assure compatibility and accuracy of the documents that they exchange. Using the current versioning scheme, early adopters of the standard will be most impacted by changes to the standard as they already have, or are in the process of, creating systems based on a specific version of the standard (i.e. 1.0). Although, there is nothing that would prevent a vendor or institution from continuing to use an older version of the standard, in most cases it is in their best interest to upgrade to the latest version. This is primarily true for the following reasons:

· Typically, global products supporting FpML have not yet reached critical mass and big bang upgrades (i.e. 1.0 to 2.0) are not as difficult and could be viewed as a cost effective expenditure even in the short term.

· In the current FpML versioning scheme updates and enhancements are made only to the latest major version and are not necessarily applied as bug fix releases of the previous version. Implementing workarounds and maintaining the older versions of the standard without the published enhancements could be costly both for the vendor of the system as well as the end users of the system.

· From a global trading system vendor’s perspective, the consuming systems of an STP feed (i.e. middle and back office systems) are typically proprietary to the customer or are built by third party vendors. Generally, if a third party vendor currently does not provide an FpML based solution, they would be reluctant to implement older versions of the standard. This results in incompatibilities, which could prevent the customer from ultimately subscribing to the service and trading on the system. As a result, upgrading to the newer version of the standard will indirectly allow trading systems to reach critical mass in shorter timeframes.

As use of a particular version of FpML reaches critical mass, it will become increasingly difficult (if not impossible) for vendors to execute “big bang” upgrades from one version to the next. At that point vendors and institutions will be forced to support multiple versions of the standard to assure backward compatibility.

Addressing issues such as the above is at the core of this paper. That is, how the FpML Architecture Working Group proposes to change the current versioning scheme such that vendors and institutions are readily able to exchange various versions of FpML documents while minimizing the costs to their business when new versions of the recommendation are produced.

2 On Versioning

2.1 “FpML processors” versus XML processors

For the purposes of this discussion, we distinguish FpML processors from XML processors. An FpML processor logically sits above an XML processor and takes over where the XML processor leaves off. Speaking with respect to XML Schema, the XML processor can ensure well-formedness and document validity insofar as the XML Schema is able to specify validity. This means that the processor can check data types, resolve internal IDs, and verify the document structure. However, determining whether the document is valid with respect to the business semantics specified by FpML is the responsibility of the FpML processor. Versioning impacts these two logical processors differently: although an XML Schema definition may be available for the XML processor to successfully validate a document, the associated FpML processor may not understand the business semantic changes that a newer version of a document contains. Since version compatibility is an issue that has greater impact on FpML processors, our discussion will by default center on FpML processors unless explicitly stated otherwise.

2.2 Versioning Requirements

· Version numbers need to be meaningful

Thus far, we haven’t been formal in the assignment of version numbers, or changing them when the specification changes. It hasn’t been an issue up to this point, as the specification was brand new when the first change came about (a post 1.0 release bug fix). However, this informal approach needs to be abandoned as real systems and business processes are implemented against the specification. A more rigorous approach to version numbering and version incrementing needs to be adopted. This approach needs to take into account the other points outlined below, to make the version numbers meaningful to both people and to processing systems. We also recognize the need for a “marketing” version number, essentially a label that tells potential users of the specification that a new version is available and identifies it as a new, independent product. Such version labels must not interfere with the meaningful version numbers used by processing systems.

· Support of independent product line (asset class) development

As more and more asset classes get folded into FpML, the only practical way to enable reasonably timely development of the standard is to allow each asset class’s working group to proceed independently of the others. DTD and XML Schema organization will have to support this division, most likely in the form of independent sub-schemas that are either logically or physically merged into a single schema whenever a new “release” is finalized. The versioning system must take this organizational and architectural structure into account, and provide reasonable support for labeling versions and merging sub-schemas into a single, cohesive, overall version, one that can provide assistance during processing to determine version change impact.

· Version dependencies between asset classes

As business process is integrated into the FpML specification and standard, dependencies between asset classes will begin to emerge. For instance, when a hedge trade is associated with another trade; the hedge may be in a different asset class altogether. Since each product working group will be developing its part of the FpML specification independently of the others, sub-schema version dependencies will be important to track.

· Versioning assistance to automated processing

Changes in protocols tend to be significant events for organizations, entailing considerable work and testing at each end of the wire. However, we observe that not every change in protocol will impact every system that consumes that protocol in a uniform manner. This will be especially true for FpML, where changes to a single asset class may force an overall version change, but these changes will be confined to systems that are concerned with the particular asset class. We believe that automated support for determining the scope of impact of a version change is required and that the proposed version system can be used for this purpose to good effect.
· “Just enough” versioning

Different organizations and systems will have varying appetites for creating systems that handle version changes in simple or complex ways. One organization may want to invalidate a document that has any version label other than what it is expecting, whereas another may wish to determine if the new version contains changes that may be safely ignored and still process the document successfully. The version system should support this notion of “just enough” versioning—it should provide sufficient information in a simple way such that a new version can be easily identified and appropriate action taken, and it should also contain information that may be optionally consulted in order to determine if a particular document can be safely processed even though it is coded against a newer version of the specification.

· Version tracking granularity

Version labeling and tracking can be implemented at various levels. At the coarsest level, versions can be applied only to the entire specification. At the finest level, individual elements can be versioned. The versioning scheme adopted must allow not only for an appropriate granularity of version tracking to take place, it should also provide flexibility to processors in choosing a granularity level in their use of this versioning information.

3 Analysis

3.1 Processor vs. Instance Document Version Change Impact

Processors and instance documents each have slightly different issues with respect to version changes:

· Version change and processors: FpML processors are concerned with version changes insofar as they must gracefully handle instance documents that may reference a schema version which is newer than the version that the processor expects.

· Version change and instance documents: Version changes are of interest with respect to instance documents in two cases: 1) where an instance document exists when a newer version of the specification comes out and is supported in software, and 2) where instance documents are created against older versions of the specification, but consumed with systems coded against newer versions of the specification. As far as processing such documents goes, both cases can be treated identically.

[image: image2.wmf]

Instance

Processor

1

.

0

2

.

0

3

.

0

4

.

0

Consecutive

versions

We will consider these two areas below as we outline the different types of changes versions may contain.

3.2 Kinds of changes that versions may contain

For the purposes of determining how to handle change, we have identified five classes of change, one or more of which will be present in any new version of the FpML standard. Each of these types of change will impact processors and instance documents differently. In each case, we are only considering a processor that is written against a single version of a specification, not one that has code to handle all versions up to and including the current one.

Some changes are combinations of the above: for instance, changing the content model of an element from simpleContent to complexContent is essentially removal followed by refinement, and would entail the related document and processor impact profiles.

3.2.1 Extension

This type of change refers to the addition of new constructs in a schema such that existing constructs are not impacted. An example of this would be the introduction of a new asset class to the specification. A counterexample of this type of change would be the addition of a new element to an existing schema structure (see Refinement below). A gray area would be the addition of support for a new instrument in the sub-schema of an existing asset class—if the addition is orthogonal to all other instrument “types” within the sub-schema, then this potentially will have no impact on existing constructs and their processing. Whether this gray area will have impact or not will be determined by the granularity of version tracking adopted by the system.

· Processor impact: Instance documents that are written against a newer specification that only contains extensions will impact a processor only in the case of the document containing an instance of the new extensions. Documents that only reference the structures present in previous versions will not impact the processor’s ability to handle the document. For example, if document written against version 3.0 of the specification is detected by a processor coded to version 2.0, the processor may not be able to validate the document.

· Document impact: Instance documents created against a previous version of a specification will have no trouble being processed by a processor that is coded against a newer version of the specification if the newer version only contains extensions. For example, if a document written against version 2.0 of the specification is detected by a processor coded to 3.0, the processor will still be able to validate the document.

3.2.2 Refinement

This type of change refers to the case where an existing schema is augmented with one or more new elements. These elements may be optional or required.

· Processor impact: Instance documents written against a “refined” specification may cause processing to fail if the processor is expecting at most a previous specification version. If the refinement is optional, the processor may be able to successfully process the document; however, the conservative stance would be that any case of a document written against a refined specification would be kicked out as “un-processable”. So, for example, if a document is written against the 3.0 version of a “refined” specification whose refinements are optional, and a processor coded to the 2.0 version of the specification receives this document, the processor will only be able to validate the document if the optional refinement is not used. If the optional refinement is used, or if the refinement is not optional, then the processor will not be able to validate the document.

· Document impact: Instance documents created against a previous version of a specification may fail if a processor is coded against the “refined” version, and the refinements are required. If the refinements are optional, documents written against previous specification versions may be successfully handled by processors written against the refined specification. Again, unless detailed knowledge of the changes is known, the conservative approach would be to reject the document. For example, if a document is written to version 2.0, and a processor is coded to handle the “refined” version 3.0, unless the refinements are optional, the document cannot be validated by the processor.

Reinterpretation

This type of change is probably the most subtle. It refers to not a change in the set of declared elements in a specification, nor a specification’s structure, but rather in how the data in the specification is interpreted. In other words a change in the semantics, but not in the syntax of the specification. Handling this type of change is especially tricky, as there are no structural forms to key off of that would allow an automated system to detect such a change. An example of reinterpretation is an element that specifies a rule to determine the last business day of each month. The semantics of this element could change from “the last business day of each month is the last Thursday of each month” to “the last business day of each month is the last Thursday of each month if not a holiday else the previous business day”.

The nature of reinterpretation implies that such a change is always required; a document written against a specification version that has been “reinterpreted” would be unlikely to use the previous interpretation.

· Processor impact: Documents written against a newer, reinterpreted version of a specification would almost certainly cause processors expecting previous specification versions to break. So for example, if a document is written against version 3.0 and a processor is coded against version 2.0, then the processor most likely will not be able to validate the document, or in the more dangerous case, the document may be erroneously declared valid

· Document impact: Documents written against a version of a specification that is handled by a processor that is coded against a reinterpreted version of the specification will also most likely fail, as the semantic validation involved with the previous version will no longer be in place for the current version. For example, a document written against the 2.0 version will unlikely be successfully processed by a processor coded against a 3.0 version that contains reinterpretations.

3.2.3 Removal

This type of change will probably prove to be the most unlikely to occur in practice. This change refers to the removal of an element from a schema. Motivations for this type of change include an optional element that has never been used, or else the removal of the element from one part of the schema and addition of the element in another (removal and refinement). Although this type of change may be possible in theory, in practice it will be in the best interest of FpML to disallow it as a matter of policy.

· Processor impact: Documents written against a newer version of a schema that has had elements removed may still be successfully handled by a processor if the element was originally an optional element, and the business semantics that remain do not require the element to be present in any particular instance document. Otherwise, processors will not be able to handle such documents. So for instance, a document written against version 3.0 can only be successfully handled by a processor coded for 2.0 if the removed elements were originally optional and their absence has no impact on the business validation. Otherwise, such a document can’t be validated.

· Document impact: Documents written against a previous version of a specification, but processed with a processor coded against a version that has had elements removed will have a similar processing success profile as outlined above. Additionally, if the removed element was previously required, such documents will fail XML validation, and should never even reach FpML business validation. So for example, a processor coded against 3.0 will not be able to validate a document written against 2.0 if the removed elements were originally required, and will have only questionable success if the removed elements were optional.

Redefinition

This occurs when the schema does not change, but the schema definition does. For example the same construct might be defined twice in different parts of the schema and later “factored out” by defining it once in one place and placing references to it where necessary. Another example is when the same schema can be defined using different design styles.

· Processor impact: None.

· Document impact: None.

Although redefinition has no impact on neither the FpML processor or the instance documents it might still affect an organization using that version of FpML. In general this happens when some other part of the organization’s information system infrastructure depends on the form of the schema definition itself as opposed to the conceptual schema per se and its semantics. An example is a system that applies an XSL transformation on the schema definition to extract information from it.

4 Proposed Versioning Approach

Given the above requirements and observations, we have formed the following approach for handling versioning of schemas in FpML. Although the approach we describe here will be described with respect to an implementation in XML Schema, we believe that a similar and compatible implementation is possible in DTDs.

4.1 Definitions

Our use of a few terms warrants further explanation before we proceed with the proposed approach.

· Sub-schema

A large and complex schema such as FpML consists of many cross-referenced grammatical definitions all or most of which must be accessed by the XML processor during the parsing and validation of an instance document. However as with most large and complex things there is a need to organize its structure to make working with it easier for mere mortals.

For our purposes, and in the most abstract sense, a sub-schema is a subset of the definitions and declarations that together compose the larger schema. The subset is a logical construct; there is no requirement that there is a physical separation of sub-schemas (i.e., in different files) from each other or from the larger schema, although such a separation is probably convenient. Additionally, although there is no formal requirement, it is generally desirable for the definitions and declarations in the sub-schemas to have some sort of logical relationship with each other. In other words, sub-schema will be the name we use to refer to some sort of convenient grouping of schema definitions and declarations.

All sub-schemas are part of a larger schema and are disjoint from one another; that is, the intersection of the definitions and declarations within sub-schemas yields the empty set. This is not to say that one sub-schema can't utilize an element defined in another, it is simply saying that the definition and declaration spaces of each sub-schema are disjoint. For FpML, sub-schemas roughly map onto the independent parts of the FpML specification managed by each of the Product Working Groups. Thus, the definitions and declarations specified by the FI PWG are disjoint from those specified by the FX PWG.

Sub-schemas themselves are versionable objects. The proposal only mandates sub-schemaization and versioning of the sub-schemas that are “direct children” (see the next definition) of the overall FpML schema. However, any individual PWG may internally adopt this same discipline to organize the work that goes into defining that PWG’s sub-schema.

· Direct Child

We will use the term direct child to refer to the first “layer” of sub-schemas that go into making up an overall schema. Given the above definition for “sub-schema”, it is possible that an individual PWG may wish to divide further their sub-schema into additional sub-sub-schemas, sub-sub-sub-schemas, etc. Such a recursive division of the definition and declaration space of a schema could then be represented as a tree structure, with the overall schema as the root, the sub-schemas as the first descendent nodes in the tree, the sub-sub-schemas as the next layer of descendents, the sub-sub-sub-schemas the next, and so on. The direct child sub-schemas are, therefore, those nodes in this tree with a distance of 1 away from the root. The proposed versioning solution will mandate that versioning information be captured only for direct child sub-schemas.

· Dependency

Although sub-schema contents do not overlap, there may be relationships between them. For instance, since most of the asset classes in FpML have an interest in using elements for things like business centers, money, date conventions, etc, these definitions, which are not specific to an asset class, could all be collected into a single sub-schema and the contents of the sub-schema would be used by the sub-schemas managed by the respective PWG. Such a relationship represents a dependency between two or more sub-schemas. A sub-schema has dependents if other sub-schemas use the definitions and declarations it contains. Conversely, if a sub-schema uses the definitions or declarations from another sub-schema, this sub-schema depends on the sub-schema whose content it uses.

These relationships are purely descriptive; they don’t imply any specific physical implementation requirements, nor is any graph traversal driven from this description. Therefore, there are no restrictions as to the overall dependents/depends on structure for a group of sub-schemas. Although probably not sensible, dependency cycles are allowable: given sub-schemas A, B and C, it is allowable that A depends on B, B depends on C, and C depends on A.

Given that version information for an overall schema will only involve recording versioning information for direct child sub-schemas, dependency relationships will only be captured for dependency relationships between direct child sub-schemas. We can generalize this notion by stating that inter-sub-schema dependencies are only stated between sub-schemas that have the same “parent”.

· External Dependencies

The above dependency descriptions apply to sub-schemas that are subsets of the entire set of definitions and declarations for a single schema. However, how are dependencies on external schemas handled? For example, a future FpML version may use some of the business process schemas defined in another standard. However, we believe that our proposal does not need to take any such dependencies into account. The reason is that such external standards must be able to uniquely identify their own unique versions to avoid confusion for the users of those standards. Therefore, references to external schemas should resolve to specific versions. If a sub-schema that uses an external schema changes to use a newer version of that schema, that sub-schema must change at the very least to reference the new version, and potentially more substantially if the new version of the external schema has changed significantly. In any event, such a change necessitates a change in version of the sub-schema (as will be described below), and therefore the change to the external schema will be propagated to FpML through the changed sub-schema, which will be handled by the version scheme. Therefore, we don’t believe any additional reference to external schemas is needed in our proposal.

· Compatible

We define schema B to be compatible with schema A when it is both syntactically and semantically backwards compatible with respect to A. Schema B is syntactically backwards compatible with schema A if and only if all the instance documents written against schema A are also valid against schema B. Schema B is semantically backwards compatible with schema A if and only if all instance documents written against schema A have the same interpretation with respect to the semantics of both schema A and schema B.

4.2 General Description

The proposed versioning solution entails establishing a convention for annotating schemas with version metadata that describes a variety of properties of the overall FpML specification and its sub-schemas. These properties include overall version, sub-schema version, dependency information between sub-schemas, compatibility information, and enumerations of changed elements. These properties are layered, providing processors a choice of versioning granularity that they may utilize.

An important aspect of this approach is that the bulk of the version information is stored in the schema for FpML (XML Schema or DTD), and not in the instance document itself. The instance document will simply contain a reference to the relevant schema that contains the versioning metadata.

Additionally, since all schema versions are available to processors, a processor that takes advantage of all available version information may in some cases be able to successfully process a document that is written against a newer schema version than the one against which the processor is coded.

4.3 Assumptions and Initial Conditions

We’ll begin by outlining a set of policy conditions that must be agreed to and met in order for this approach to work.

1. We establish and enforce a strict division between a “marketing” version number and an “operational” version number. A marketing version number is simply a label, a convenient name that the world can use to identify a particular operational version number. Examples of this are often product names, like Excel 97, or Word XP. The operational version number will actually convey specific version semantics as will be outlined below. An example of this is that 9.0.3821 SR-1 is an operational version number of Word 2000. However, the marketing version number, as long as it meets certain criteria, can mean as much or as little as those who establish them wish them to mean. Determining the marketing version number will be a function of the Standards committee, whereas determining operational version numbers will be the responsibility of the Architecture and Product working groups.

2. Any time an operational sub-schema of FpML changes, the marketing version number must change. This is because we will use the marketing version number to identify a collection of versions of sub-schemas that compose a particular version of FpML. So if even a single sub-schema of FpML changes, the marketing version number must change as well.

3. Marketing version numbers must increase linearly and must be comparable. This final condition on marketing version numbers says that the relational operations “<”, “≤”, “=”, “≥”, and “>” must be defined, and that for any given version n and a subsequent version m, the statement n < m is always true.

These three conditions still leave quite a bit of flexibility in determining the marketing version number. For instance, normal decimal numbers can be used like 2.0 and 3.2, or multi-decimal point strings may be used instead, like “2.0.1”, “3.2.2.1”, etc. Or, a character string with a numeric suffix will also work, like “FpML-1.0” and “FpML-2.0.1”. All of these will fulfil the three above conditions, most notably the third.

There are some additional assumptions and conditions that we need to state before we outline the versioning approach:

4. At any given time, there will only be one official version, which will include all the latest versions of all sub-schema pieces. Although there may be multiple outstanding release candidates for future release, there will always only be one official overall FpML release. This is a policy matter that states that we’ll never split the specification.

5. As has been alluded to above, the entire FpML schema space is partitioned into multiple sub-schemas. This is in line with how the Product Working Groups are organized—each PWG will be responsible for the relevant sub-schema, and the AWG may wind up being responsible for a common sub-schema. As business process and messaging are added to FpML, additional sub-schemas may be established.

6. Each sub-schema will be responsible for establishing its own version number. Similar to no. 2 above, if any portion of the sub-schema changes, the version number of the sub-schema must change.

7. Each sub-schema must also track any dependencies it may have on other sub-schemas. For instance, the equity swap sub-schema may have a dependency on the swap sub-schema for hedging purposes. In this example, for any given version of the equity swap sub-schema, the PWG for that sub-schema must track which version of the swap sub-schema on which they rely and with which they are compatible.

8. Any collection of sub-schemas that will make up a particular version of FpML must be internally consistent. In other words, one sub-schema can’t be dependent on a version of another sub-schema that isn’t actually in the current set of sub-schemas making up the overall specification. For example, the EQSWAP sub-schema can’t be dependent on version 1.2 of the SWAP sub-schema if the version of the SWAP sub-schema that is actually included in the current specification is only 1.1.

9. Any time a sub-schema is changed, a determination as to whether the change will impact documents/processors must be made, in line with the five types of changes outlined above. Although it is not required to formally identify which of the above kinds of changes have occurred, what must be formally determined is if 1) documents written against the previous version will not be processable by processors coded against this new version (document impact), and 2) if documents using this new version will not be processable by processors coded to the previous version (processor impact). This should be a binary determination; a conservative approach should be taken in the cases where the answer is that there may be an impact. Under these circumstances, the new version should be labeled incompatible with the previous version.

10. If the new version is expected to be compatible with the most recent version, the oldest compatible version must be identified. The reasons for this are subtle but important, and they will be more fully explained below. For now, consider this example where a single sub-schema undergoes a series of version changes through time:

Current version
New version
Compatible with current?
Oldest compatible

A (initial version)
B
no
n/a

B
C
yes
B

C
D
yes
B

D
E
no
n/a

E
F
yes
E

In this example, changes in B make it incompatible with A, and so it doesn’t need to note an oldest compatible version. Both C and D are compatible with their immediately preceding versions, and so they list B as their oldest compatible version. However, E is incompatible with D, and so it doesn’t need to list an oldest compatible version. Finally, F is compatible with E, and it lists E as the oldest compatible version.

The reason this information is important is that it can tell the processor something about whether it can process instance documents written against a particular version. If a processor is coded against a version that is compatible with the previous version, and it receives an instance document whose version is between the current version and the oldest compatible version, then the processor can successfully process the document. If, on the other hand, the document was written against a version prior to the oldest compatible version, then the processor can’t process the document. If the processor was coded against a version that is incompatible with the previous version, then any version before the previous one will be incompatible.

Similar deductions can be made if the version information for the document shows that it is written against a version created after the version used by the processor.

11. All of the sub-schemas that are direct children of the overall FpML schema must be listed when describing a version. This requirement exists simply to make completeness formally required. It also makes formal the need to only list the coarse, “high-level” sub-schemas when describing a version.
12. If a sub-schema version is incompatible with a previous version, then the new overall schema version must also be marked as incompatible with its previous version. This is the conservative approach in determining whether a sub-schema's incompatibility will impact the overall schema. In practice, an incompatible sub-schema version may not uniformly impact all instance documents created against the overall schema, because elements from the incompatible sub-schema may not be used in all instance documents. The processing algorithms presented below illustrate how such distinctions can be made.
4.4 Describing a Version

In this section, we introduce a small XML Schema that is be used to capture the above versioning information. After this, we present some examples of how this XML Schema can be used to represent version information in a variety of scenarios. Finally, we present methods to incorporate this information into the DTD and XML Schema documents that are used to specify FpML.

Before we explicitly list the versioning schema, we describe the semantics of each of the elements that the schema will define:

· oldestCompatible: this element contains the version string for the oldest version that is still compatible with the current version. It is used for both sub-schemas and the overall specification. The oldest compatible version that is named in this tag’s contents depends on the context in which the tag appears; if it appears as a child of the sub-schema tag, then the version named is a previous version of the sub-schema. If it is a child of the versionDescriptor tag, then the version named is a previous version of the overall schema. If this tag is missing in the version descriptor for a schema, then the previous version of the sub-schema or schema is incompatible with this one.

· description: this element provides a place for free-form text that describes the version, both at the sub-schema and the schema level. This element should contain text that would be appropriate for release notes for the version (which can be automatically generated from this text in the schema).

· label: this element contains the string that names the version of a sub-schema or specification, depending on the context in which it appears.

· sub-schema: this is a container element for a set of tags that describes a single sub-schema of the overall version.

· versionDescriptor: this is the top level container element for all other elements that describe the information for the overall version. This element has a single attribute, “metaVersion”. This integer attribute is how different versions of the versioning schema itself are identified.

We now present the XML Schema that uses these elements to create a version descriptor. First, a graphical view of the schema:

[image: image3.jpg]metaversion
integer

+ label

sting

5| oldestCompatible,
#sting

@
+ versionDescripto sting

Versianbescriar + label
string

+ subschemay| | [+ oldestCompatible,
Subschena | sting

+ description
string.

Next, the XML Schema associated with this diagram:

<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by XML Authority. Conforms to w3c http://www.w3.org/2000/10/XMLSchema-->

<xsd:schema xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema">

<xsd:group name = "commonDescription">

<xsd:sequence>

<xsd:element ref = "label"/>

<xsd:element ref = "oldestCompatible" minOccurs = "0"/>

<xsd:element ref = "description"/>

</xsd:sequence>

</xsd:group>

<xsd:element name = "versionDescriptor" type = "VersionDescriptor"/>

<xsd:element name = "label" type = "xsd:string"/>

<xsd:element name = "oldestCompatible" type = "xsd:string"/>

<xsd:element name = "description" type = "xsd:string"/>

<xsd:complexType name = "Subschema">

<xsd:sequence>

<xsd:group ref = "commonDescription"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name = "subschema" type = "Subschema"/>

<xsd:complexType name = "VersionDescriptor">

<xsd:sequence>

<xsd:group ref = "commonDescription"/>

<xsd:element ref = "subschema" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "metaVersion" use = "default" value = "1" type = "xsd:integer"/>

</xsd:complexType>

</xsd:schema>

4.5 Implementation in Schemas

An FpML Schema would have version descriptor embedded directly into the Schema itself by placing the descriptor into an “appInfo” tag within the annotation node of the FpML element declaration. For example, given these opening few lines of an FpML Schema, we would include the version descriptor as indicated:

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<xsd:element name = "FpML">

<xsd:annotation>

<xsd:documentation> if any </xsd:documentation>

<xsd:appInfo>

<versionDescriptor metaVersion=”1”>

<label>FpML-2.0</label>

<oldestCompatible>FpML-1-0</oldestCompatible>

<description>

This is the first version of FpML where asset classes

are defined each in a different subschema

</description>

<subschema>

<label>SharedDataElements-1-0</label>

<oldestCompatible>SharedDataElements-1-0</oldestCompatible>

<description />

</subschema>

<subschema>

<label>Swaps-2-0</label>

<oldestCompatible>Swaps-1-0</oldestCompatible>

<description>

Only change is to factor out the defs from the core.

No incompatibilities should be introduced.

</description>

</subschema>

<subschema>

<label>FX-1-0</label>

<oldestCompatible>FX-1-0</ oldestCompatible>

<description>

A new subschema covering the FX asset class.

</description>

</subschema>

</versionDescriptor>

</xsd:appInfo>

</xsd:annotation>

{ the rest of the declaration for the FpML element… }

</xsd:element>

{ the rest of the FpML Schema… }

</xsd:schema>

This example shows how the version descriptor is embedded in the XML Schema such that version and dependency information is directly included in the schema. It is important to note that this descriptor data is only in the schema; this data is not included in an XML instance document written against this schema. This is because the instance document must reference this schema, and so by loading the schema in order to validate the document, the version descriptor is available for parsing and processing as well.

The annotation node is an artifact of XML Schemas; DTDs have no analogue to this Schema element. However, since the descriptor is specified via XML itself, it would be a simple matter to adopt a convention for creating a descriptor that can be used with a DTD. For instance, by putting the descriptor in a parallel file that is matched with the DTD that describes a particular FpML version, or possibly by placing the descriptor in a comment within the DTD itself.

4.6 Processing Algorithms

In this section, we present a number of high-level algorithms that show how a processor could use (or ignore) the versioning information. As stated earlier, the versioning approach must allow for choices in the degree of implementation sophistication of version information processors. This is the reason why several algorithms will follow—there are different algorithms for each level of processing sophistication.

Each algorithm must address three general cases when encountering instance documents:

1. The document is written against the same version as that of the FpML schema the processor is using. In this case, there are no processing issues.

2. The document is written against an earlier version of the FpML schema than the processor is using. There are two general solutions here. One is that a processor is implemented as a collection of processors, each capable of handling a particular version, and a “switch” exists to activate the proper processor depending on which version of the schema any particular instance document is written against. If this approach is used, then no matter against which schema version a document is written, there will be an appropriate processor around, and therefore this case will collapse into #1 above. However, this can result in a bloated processor as more and more versions of the FpML schema are created. The second solution is to use the version information to determine if and when incompatible versions will necessitate a new processor, and only switch when there are incompatibilities. The first solution can always be made available for each of the algorithms, and since it does not illustrate the use of the version descriptor, it is not considered in the algorithms.

3. The document is written against a later version of the FpML schema than the processor is using. In this case, only the version information can help make finer determinations as to whether a document may be processed or not.

These algorithms have not been created with efficiency or brevity in mind; they are arranged to make their processing steps clear. Various optimizations are therefore possible and desirable.

For each algorithm, we let PV indicate the “processor version”, and DV indicate the “document version”. Additionally, the ‘#’ character will introduce a comment to the end of the line.

Also, in a manner similar to the requirement regarding the ability to use version labels with relational operators (<, ≠, ≥, etc) in order to determine newer versions, in the algorithms that follow, we use the relational operators to allow the testing of schema versions used in either creating documents or coding processors. So, for example, PV < DV indicates that the processor was coded against an older version of the schema than the document was written against, and PV == DV means that the document and the processor both have been created against the same schema version. The other relational operators have their usual interpretation.

4.6.1 Algorithm 1: Ignore version descriptor

This is obviously the simplest algorithm, and probably where many implementations start. The only version information utilized in this case is the overall schema version. The processor and instance document both have knowledge of which schema version they are coded/written to.

if PV < DV:

reject document

elif PV == DV:

process document

else: # then PV > DV must be true

reject document or switch to older processor

4.6.2 Algorithm 2: Use schema oldest compatible information

This algorithm uses the value in the oldestCompatible element for the schema to determine what to do with the document. We use the symbol PSOC to denote the version label for the oldest compatible schema version that the processor is expecting, and DSOC to denote the version label for the oldest compatible version for the schema that the document has been created against.

Algorithms from this point forward assume that access to version descriptors for all referenced schemas is available. This does not mean that the processor knows how to handle a particular version, especially if the version is higher than the one the processor has been coded to understand, but it does mean that the version descriptor for the higher version is available for the processor to access.

if PV < DV:

if DV is incompatible with the previous version:

reject document

elif DSOC ≤ PV:

then the processor falls within the range of the oldest compatible

process document

else:

reject document

elif PV == DV:

process document

else: # then PV > DV must be true

if PV is incompatible with previous version:

reject document or switch to older processor

elif PSOC ≤ DV < PV:

#see note below

process document

else:

reject document or switch to older processor prior to PSOC
Note: Strictly speaking, the test here could have simply been PSOC ≤ DV. This is because at this point, we know that DV ≤ PV and DV ≠ PV, therefore DV < PV must be true. The only remaining test for “processability” for this document is to see if the schema version of the document is greater than or equal to the oldest compatible schema version for the version of the schema the processor has been created against (PSOC). In other words, we can successfully process a document if its version lies between the versions that the processor has been directly coded against, and the oldest compatible version for the processor’s schema. Since we already know that DV < PV is true, it would have been sufficient to just test for PSOC ≤ DV to see if we can process the document.

4.6.3 Algorithm 3: Use sub-schema oldest compatible information

This algorithm expands on the use of the oldestCompatible tag, additionally taking note of the oldest compatible version of individual sub-schemas. We will introduce some new notational conventions for this algorithm: DCOC will refer to the oldest compatible version of a sub-schema according to the document’s schema, and PCOC will refer to the oldest compatible version of sub-schema according to the schema against which the processor was built. We may also add i to any of these when we want to indicate a specific instance of a sub-schema from within a set of sub-schemas.

let’s get the simple case out of the way first…

if PV == DV:

process document

else:

subSchemaDict = identifySubSchemasInInstanceDoc()

if PV > DV:

if PV is incompatible with the previous version or DV < PSOC:

foreach DCiOC in subSchemaDict:

if DCiOC < PCiOC:

reject document or switch to older processor

return

if we get to here (we didn’t reject or switch), then it’s safe

to process this beast, as none of the subschemas used in

in the instance doc are older than the oldest compatible

version of the same subschema handled by the processor

process document

else: # PSOC ≤ DV must be true

process document

else: # DV > PV must be true

if DV is incompatible with the previous version or PV < DSOC:

foreach DCiOC in subSchemaDict:

if PCiOC < DCiOC:

reject document or switch to older processor

return

if we get to here (we didn’t reject or switch), then it’s safe

to process this beast, as none of the subschemas used in

in the processor are older than the oldest compatible

version of the same subschema in the instance doc

process document

else: # DSOC ≤ PV must be true

process document

5 FAQ

5.1 If one sub-schema is incompatible, does that make the overall version incompatible?

It can, but this is not a necessary outcome. Strictly speaking, if the entire schema is considered as an indivisible whole, then a single incompatible sub-schema would make the overall version incompatible. However, since our proposed approach allows us to consider the individual pieces of the overall version independently, as well as their relationships to each other, a finer level of incompatibility “detection” can be achieved (or ignored; the approach still allows the detection of a single incompatible sub-schema to be considered as an overall incompatible version). The scope of the impact an incompatible sub-schema would have on the overall schema depends on what other sub-schemas are dependent on the incompatible one. This is discussed in section 4.3.

5.2 Must a processor fully interpret all versioning compatibility and dependency data?

No. Implementers may choose how much of this data they choose to absorb and handle. Typically, interpreting less than the entirety of the version descriptor simply means that more documents will be kicked out as “unprocessable” when unexpected versions are encountered. Indeed, the extreme case would be that if ever an overall version number higher than what is expected is ever encountered, then the document is rejected. The proposed approach allows for implementations as coarse as this, or as fine as interpreting every changed tag.

5.3 Is it realistic to plan to track all these changes? Isn’t this going to be too complicated?

No, as no more data need be tracked with this method than would have been tracked anyway. If absolutely no scheme for tracking version changes was created (beyond a general release number for the overall schema), the textual description of the specification, and any release notes that would accompany a new version, would have to convey all of this same information anyway. Encoding this information in the above schema simply provides a machine readable form for this data, allowing intelligent processing to be implemented if so desired. So in reality, no extra data collection and tracking work is generated by adopting this approach. Additionally, it may be possible to actually generate the prose description of the changes in a new version from this version descriptor metadata.

5.4 How can a processor detect what sub-schemas are present in an instance document?

There is no direct way to determine which schema sub-schemas are used in an instance document by looking at the instance document exclusively.

A system that needs to make such a determination would be better served by parsing the XML Schema files that comprise the schema itself and producing a cross-reference index to which it can refer during instance document processing.

5.5 If older processors are kept around and activated by a “switch”, why would you ever use the current processor to process an older document?

Because it may be more desirable to run the current processor for one reason or another. For instance, the current processor may be coded to create a more current version of a local business object model as a result of parsing the instance document than would an older processor. If so, you would prefer to use the “newest” processor unless you were unable to due to compatibility problems. Another possible reason is that the newest processor is faster, and no work has been done on older versions to make the speed equivalent. That being said, however, it is also reasonable for an implementation to either 1) keep old processors around and activate them with a “switch”, removing the need for the compatibility testing logic, or 2) keep the compatibility logic and simply kick out as exceptions any documents that are older than the oldest compatible version.

5.6 Wouldn’t versioning granularity at the element level be useful?

In this proposal, versioning data on the element level is not captured. However, we realize that some sophisticated FpML processors may use this information if it is available. It would be useful, but it is not practical to include in the schema definition versioning information for each element, attribute, or other construct.

5.7 Should the FpML version number change if the means of defining the grammar changes, but the grammar itself does not change?

Yes, it should. Any difference of any kind between the two schemas should be indicated with a version change. This is the case of redefinition and it is explained in section 3.2.5.

�??? this should be changed to a sourcecast address

25
	
	
2

_1090790743.doc

Consecutive versions

4.0

3.0

2.0

1.0

Processor

Instance

