
FpML Schema Versioning

FpML Architecture Working Group

Editor: Andrew Jacobs (chair)
2008-03-21
Introduction

FpML is an evolving schema. Each new release of the specification adds new derivatives products or extends the capabilities of existing ones, supports new business processes, and/or incorporates technical improvements to the overall schema design.

From a software perspective change is always a problem. Building and maintaining a complex transaction processing system is expensive and time consuming regardless of how well it has been designed. Even a small adjustment to an underlying schema may call for revisions to program code or scripts. Often although the updates themselves are small, the effort needed to implement them may be significantly dwarfed by the amount of testing required before the new code base can be released into a production environment.

Perhaps not surprisingly then we find that many business units do not maintain their systems in ‘lockstep’ with FpML releases and a number of common update strategies have emerged depending on usage, namely:

· Users of common industry services (e.g. matching, etc.) will periodically have a synchronised ‘big bang’ update where all service users will independently prepare a new code base that they will switch into production on an agreed date.

· Internal systems are often integrated using a specific FpML release (plus bespoke extensions) that is only updated when new specifications provide important new business functionality that can be used to justify the expense of the update. Often such ‘evolutionary’ updates skip over several intervening FpML releases.

· Common internal systems (i.e. risk management, valuation, and settlement services, etc.) sometimes support multiple releases of FpML simultaneously. Often this is a result of systems in different source business groups simultaneously following ‘evolutionary’ strategies but with different base FpML releases and rates of update.

At the same time we often find that tool vendors do support every release of FpML even though their clients are following one of the previous three strategies but from different starting points.

Versioning in FpML

Versioning as it exists in FpML today (release 4) is very strict in implementation and since release 1.0 has been based on an interlock between two pieces of data that must be present in all FpML documents, namely:

· Public Identifier or Namespace URI

An FpML document defines with release it is an instance of though a public identifier (in old DTD based documents) or a schema namespace URI.

To date each release of FpML has had a unique public identifier or namespace URI.

· Version attribute

The root element of an FpML document has a version attribute which contains the version number of the release that the document asserts itself to be. In FpML 1.0 through 4.x the version attribute is call ‘version’. From FpML 5.0 it will be renamed ‘fpmlVersion’.

Schemas for revisions of a major version will accept the version numbers of previous minor releases (e.g. the schema for FpML 4.3 will accept version attributes indicating 4.2, 4.1 and 4.0 as well as its own 4.3).

During a validating XML parse these two required pieces of data are checked for consistency against the grammar. If a document references a schema unknown to the processor or the version attribute indicates a substantially different version than that supported by the schema an XML error will be generated during parsing.

This technique relies on releases being correctly labelled according to the severity of the changes to the grammar as it evolves. A release that accepts a document claiming to be a previous minor version cannot have had any element name changes, increases in element cardinality or new mandatory elements or attributes in a part of the grammar it shares with the older revision. Such changes would cause an old valid document to become invalid when processed against the new schema.

Proposed Changes

It has been suggested that from FpML 5.0 we adopt a new versioning method in which multiple minor releases would share a common namespace URI based only on the major version number.

We will see this approach more loosely connects instance documents to the schema however the correct labelling of releases becomes critical and will probably lead to more frequent major schema releases.

Versioning Effects

The following sections look at different aspects of ‘compatibility’ and how the choice of versioning strategy affects them.

Document Compatibility

One way of looking at the effect of versioning is to consider how different approaches would operate within a complex computer system. For example we could look at how a system would react to being given documents using versions of FpML other that that its was specifically designed for. For example we can define:

· Backward compatible

‘The ability of a system to process a document generated for a previous minor release of FpML than it has schemas for without requiring the document to be modified.’

· Forward compatible

‘The ability of a system to process a document generated for a later minor release of FpML than it has schemas for without requiring the document to be modified.’

Strictly speaking the design of FpML up to the present 4.x series has been neither backward nor forward compatible at the document level. Instance documents can only be processed against the schema they reference and ‘namespace resolving’ via an XML catalogue cannot be used to process a document against another schema because the declared namespace in document and target namespace in the schema would be different (generating an XML parsing error).

FpML’s current claim of ‘content’ compatibility is based on the fact that in most cases a fairly trivial modification to the document, that is changing the FpML namespace reference, is usually all that is required make a document compatible with a later schema version.
 

From the preceding paragraphs it may seem that FpML’s use of strict version control it quite limiting but in practice it is quite easy for a Java and/or Microsoft .Net based application to simultaneously support multiple schemas and differentiate between documents using them using a single validating XML parse.
 For the schema based FpML 4.x series the consistency of the underlying model means that code designed to navigate a DOM tree will often work against many versions with little or no specific coding provided the namespace properties are ignored, although such a program will continue to generate errors when given a document outside its set of known releases.

If the new approach to schema namespace URLs were adopted then a different processing behaviour would be exhibited. As all minor releases have the same namespace URL then a document can be processed against any schema in the same major version series without any modification. The definition of the version attribute affects the degree of compatibility:

· If the current use of an enumeration for the version attribute is maintained then an FpML document could be processed against any later schema (as it contains an enumeration of previous compatible releases) but not an earlier one. The schema, and the systems using them, would become backwards compatible.

· If the definition of the version attribute is changed from an enumeration to a regular expression pattern (e.g. ‘5-[0-9]+’) then a schema would accept a document targeting any minor release in the same major version series. This would make schemas and their implementing systems both backwards and forwards compatible provided the document contains no features that are not supported in the processing applications installed schema.

As it is not possible to differentiate between minor releases directly an efficient parsing application can only support a single version of each major release series. Parsing against a specific version would require an initial parse to determine the value of the version attribute and a second validate to process against the associated schema however if backwards compatibility is rigorously applied between minor versions then an application should never have to perform this second step.

This change is likely to affect tool vendors more that institutions as they more regularly update their code base. Tools would need to be configurable to select particular minor release versions in use, for example by changing XML catalogue entries to point to schemas held in minor release specific sub-directories.

Script Compatibility

A number of simple FpML processing tasks are programmed in script based languages, especially ‘eXtensible Stylesheet Language Transformations’ (XSLT). As its name suggests an XSLT script describes a transformation from one or more source documents to a new output document. This means that a script may be sensitive to the namespaces of both its input and output documents.

The design of an XSL scripts often mirrors the structure of the documents they are producing and will normally produce all the standard attribute declarations needed to reference a schema it can be validated against. Hence the script will contain the namespace of the target schema and this would have to be updated if generation is changed to produce a later version.

An XSLT script commonly knows the namespace URLs for the schemas of its source documents as these are often used in the definition of XPath expressions (e.g. ‘//fpml:swap’, etc.), however this binds the expressions to a single schema version. It is possible to use the XSLT function ‘local-name’ to write expressions that ignore the namespace (e.g. ‘local-name(.)=”swap”’), etc.), however the use of this function creates extremely verbose expressions and is not the intuitive choice for script writers.

The proposed changes to the namespace would bring greater stability to scripts between major releases. If the namespace URL is constant for a whole series of releases then an XPath expression will work against any minor release within the series without change provide the data content of the input documents themselves remains consistent with its original design. A working script would also continue to produce documents processable by systems using later minor versions without modification. Scripts would only need to be updated to exploit new features in a later minor or major release.

Schema Compatibility

A number of firms use binding tools to create class wrappers for document construction and access. Binding libraries are normally generated to specifically match a given schema and may or may not be tolerant of unexpected content depending on the tool used.

With the versioning approach followed to date an application would require a binding library for each FpML version it supports because of the unique namespace URLs. The approach proposed for 5.0 and later would see a single binding library being usable for a series of minor releases.

Processing an earlier document against a binding library generated from a later minor release schema should not cause any problems. Even if the schema types have been refactored or renamed since the document was produced as long as the order and nesting of the elements has been maintained in the later schema it should process successfully. Binding libraries should also be able to deal with documents generated from systems using later minor versions provided they include no new features.

Rule Compatibility

The ease with which a business rule validating application can adjust to new schemas is often dictated by the technology used to construct it. Rule engines based on XPath (or XQuery) have in the past had to deal with the same issues as script based tools and for these having a stable namespace for a series of minor releases would bring the same benefits. Engines that work more directly against the parsed DOM document form often ignore the namespace completely for much of their processing making them resilient to both minor changes and many major changes.

The approach taken by most implementations is that rules are checked when the appropriate data content is present in the document. This means that most implementations are naturally backwards compatible with previous minor versions. The structural changes that occur between major releases usually means implementing version specific instances of the rule that navigate around the changes.

As in the case of scripts rule implementations should remain forwards compatible provided the source document contains no features.

Conclusion

In general it appears that having a single namespace URL for a whole series of minor FpML releases produces greater application and systems stability than the current strict versioning regime but that these benefits can only be achieved if each release is correctly labelled as a major or minor release based on its backwards document compatibility.

If the backwards compatibility guarantee is broken then the whole strategy becomes useless because individual minor versions cannot be differentiated (for example to handle a ‘problem’ release). Neither can there be any room for ‘sneaking’ in major changes in the guise of minor releases for ‘marketing’ or ‘political’ reasons.

There is no automated mechanism to determine the compatibility of two sets of schema files so it will have to be determined manually for each release, probably by back testing the new schema against old example documents. Whilst FpML already has a large number of example documents they do not exercise every option within the schema and the library would need to be enlarged over time to provide more comprehensive testing. Even so there will remain a chance that a release will be mislabelled.

It is quite likely under this proposed scheme we would see more frequent major FpML releases (to incorporate breaking changes) and fewer minor ones (although carrying deprecated features in the schema may mitigate this). The increase in release frequency will probably limit the differences between most major releases with each containing a few non-backwards compatible changes (e.g. the removal of a deprecated feature, new mandatory elements, renamed elements, etc.) rather than wholesale change.

Systems following an ‘evolutionary’ update process can continue to take periodic releases as relevant business content is added. As significant business enhancements would probably be separated by more major releases such applications will appear ‘numerically’ more out of date than with the current scheme although the same overall number schema releases may have been made.

Common internal systems will need to continue to support multiple major versions where needed although where sources different minor releases of the same major version both sources should be processable with the same schema, scripts and binding code.

� Transforming document between earlier versions of FpML is possible but requires some more complex structural reorganisation of content.


� If we are adjusting the document text to update the namespace then we could just as easily update the version attribute as well so support for more than one version in a ‘strict’ FpML schema is not really unnecessary


� Both environments support efficient XML processing when the source documents are either all DTD based or all XML schema based. Efficient parsing is not possible when the application cannot be configured directly in advance for one type of grammar representation.


� If this were to occur then the minor release would have to be redrawn and reissued as major release.





Copyright © 2008.  International Swaps and Derivatives Association, Inc.

