Financial Date Calculations in FpML
Validation Working Group

Editor: Andrew Jacobs
Updated: 2011-01-25
Introduction
A number of the FpML product validation rules specify constraints on dates. Often these constraints are simple relative tests (e.g. an effective date should occur before a termination date) but sometimes they involve deriving other dates based on parameters defined within the product.
This document describes how to perform calculations with dates and intervals to derive new dates and schedules. Such calculations could also be applied to the XML Schema types ‘dateTime’ but within FpML such values are not used in the specification of schedules so they are not considered within this paper.
The algorithms presented in this paper have been coded using a ‘pseudo code’ based loosely on the features of Java/C# and the style used in Wikipedia. It is left as an exercise to the reader to translate these algorithms into their implementation language.

Dates

Dates in FpML documents are represented as instance of the XML Schema built-in ‘date’ type, which is closely related to ISO 8601. XML dates are comprised of the integer year, month and day properties of a specific Gregorian date. A detailed description of the ‘date’ type (and other date related datatypes) is included on part 2 of the XML Schema specification.

The textual pattern of an XML ‘date’ is shown below. The year, month and day components must always be present and may be followed by a zone offset.

yyyy-mm-dd[Z|((+|-)HH:MM)]
If present the zone offset can be expressed either as a reference to ‘Zulu’ time (e.g. UTC-0 or Greenwich Mean Time) or a number of hours and minutes relative to ‘Zulu’ time. If a date has an associated zone offset then it must be propagated through any subsequent calculation, for example:

· 2009-01-01 minus one month is 2008-12-01

· 2009-01-01Z plus one year is 2010-01-01Z

· 2009-01-01+05:00 plus one month is 2009-02-01+05:00.
Programming languages and/or their supporting libraries often provide a data type to represent dates. Some internally represent dates in terms of the day, month and year components while others will compute a single number representing the number of days since some epoch to the target date (e.g. a Julian Day Number).

Each representation has its pros and cons. In practice the features of both are needed to document the date calculations as simply as possible. Within this paper we will assume that the following operations are possible on date values

· A date value may be created by either specifying its day, month and year components or its equivalent Julian Day Number and optionally zone offset information.

// Create a date with no zone offset
date := new Date (day, month, year)

date := new Date (jday)

// Create a date with a zone offset (which may be null)
date := new Date (day, month, year, zoneOffset)
date := new Date (jday, zoneOffset)

The constructor Date (day, month, year) is equivalent to Date (date, month, year, null) and
Date (jday) is equivalent to Date (jday, null).

The ZoneOffset structure MUST be capable of the representing a signed time offset but will not be described in this paper as it is not directly accessed by any of the algorithms.

· The components of the date may be extracted from it including its optional zone offset.

day := Day (date)

// Returns an integer value in the range 1..31
month := Month (date)

// Returns an integer value in the range 1..12
year := Year (date)

// The year (e.g. 2009) as an integer value
zoneOffset := ZoneOffset (date)

// The zone offset or null if none

· The equivalent Julian Day Number can be computed from the day, month and year.

jday := JDay (date)

If this function is not accessible in an implementation then it can be defined as:

int function JDay (Date date)
{
 int day := Day (date);
 int month := Month (date);
 int year := Year (date);

 return (day + (153 * month + 2)/5 + 365 * year
 + (year / 4) – (year / 100) + (year / 400) – 32045);
}

To calculate the components of the date from the Julian Day Number, such as in the constructor the reverse calculation is as follows

Date (int jday)
{
 int a := jday + 32044;
 int b := (4 * a + 3) / 146097;
 int c := a - (b * 146097) / 4;
 int d := (4 * c + 3) / 1461;
 int e := c - (1461 * d) / 4;
 int m := (5 * e + 2) / 153;

 day := e - (153 * m + 2) / 5 + 1;
 month := m + 3 – 12 * (m / 10);
 year := b * 100 + d - 4800 + m / 10;
}

· Dates (and their derived numeric components) can be compared using standard equality, inequality and relative operations (i.e. =, != , <, >, <=, >=). Comparison operations MUST obey XPath2 rules and take into account any zone offset associated with the date.

effectiveDate != terminationDate

If zone offset information makes two date values unorderable then a runtime error should be generated.

· Some calculations will need to know the number of days in a specific month so we will define an additional function to provide this number.

days := DaysInMonth (month, year)
Intervals

In FpML the Interval complex type is used to represent time durations. The following diagram illustrates the structure of the type.

[image: image1.png]Concan e 2 D (2o

‘Generated by XmiSpy www.altova.com

FpML defines a limited number of period lengths which are applicable to financial contracts. In documents these are represented as single character codes. In this paper a complete word has been used for readability. The standard period length codes are:

· D(AY)
· W(EEK)
· M(ONTH)
· Y(EAR)
· T(ERM)
This list of periods includes a special TERM value used to indicate that interval covers the entire duration of the associated business object. In the case of interest rate swaps this means, the term of the parent InterestRateStream and is synonymous with the term of the trade.
In the Gregorian calendar a month may have a length of 28, 29, 30 or 31 days depending which month it is, and in the case of February, whether it is a leap year or not
. This variation in month and year length means it is not possible to define any simple numeric relationships between these periods other than:
· One WEEK = Seven DAYS

· One YEAR = Twelve MONTHS

· Any non-zero length interval is a multiple of One DAY

· One TERM is a multiple of any non-zero length interval

As with dates we need to define a set of basic operations on intervals to create instances and extract their component values.
· An interval value can be created by combining an integer multiplier with a period type.

interval := Interval (multiplier, period)
· The components of an interval can be extracted from the combined value.

multiplier := Multiplier (interval)

// Returns the integer multiplier
period := Period (interval)

// Returns the period type (e.g. DAY, WEEK, etc.)
FpML does not allow the definition of intervals which involve more than a single period term. For example it is not possible to define a period of 1 YEAR 1 DAY.

Calculating with Dates
There are two ways in which dates are affected by adding an interval to them depending whether the period is day or month based.
Modifying a date by a number of days (or weeks) requires calculating the date that is simply a given number of days before or after the indicated base date. This calculation is most easily performed using the Julian Day Number.
Date function AddDays (Date date, int days)
{
 ZoneOffset offset := ZoneOffset (date);

 return Date (JDay (date) + days, offset);
}

The variable length of months and years mean that calculations based on these period lengths must be performed on the components of the date.
Date function AddMonths (Date date, int months)
{
 ZoneOffset offset := ZoneOffset (date);

 // Break the base date into components and adjust the months
 int day := Day (date);
 int month := Month (date) + months;
 int year := Year (date);

 // Rolled backward into previous year(s)
 while month < 1
 {
 month := month + 12;
 year := year – 1;
 }

 // Rolled forward into next year(s)
 while month > 12
 {
 month := month – 12;
 year := year + 1;
 }

 // Adjust end of month dates
 if day > DaysInMonth (month, year) then
 day := DaysInMonth (month, year);

 return Date (day, month, year, offset);
}
Note that special handing has to be applied to dates that fall at the end of months. For example ‘31-Jan-2009’ plus one month initially yields a date of ’31-Feb-2009’ but as this date does not exist it is replaced with the last day in the month ’28-Feb-2009’.
A function to support the addition of an arbitrary interval to a date and correct it according to the date roll convention can be written using these two previous functions as a base.

Date function AddInterval (Date date, Interval interval, RollConvention convention)
{
 switch (Period (interval)) {
 case DAY: date := AddDays (date, Multiplier (interval));
 case WEEK: date := AddDays (date, 7 * Multiplier (interval));
 case MONTH: date := AddMonths (date, Multiplier (interval));
 case YEAR: date := AddMonths (date, 12 * Multiplier (interval));

 default:
 // Otherwise its an invalid period type
 error “Invalid period type”;
 }

 if convention != NONE {
 ZoneOffset offset := ZoneOffset (date);
 int month := Month (date);
 int year := Year (date);

 switch (convention) {
 case 1: return Date (1, month, year, offset);
 case 2: return Date (2, month, year, offset);
 .. and so on ..
 case 30: return Date (30, month, year, offset);
 case EOM: return Date (DaysInMonth (month, year), month, year, offset);
 default:
 // Otherwise its a complex roll
 error “Complex date roll”;
 }
 }
 return date;
}
Subtracting an interval from a date can be performed by negating the multiplier and applying the addition algorithm.
Date function SubtractInterval (Date date, Interval interval, RollConvention convention)
{
 return AddInternal (date, Interval (-Multiplier (interval), Period (interval)), convention);
}
Combining Intervals

Within some calculations we need to combine intervals so we also need to define an addition operator for intervals as follows:
Interval function Plus (Interval lhs, Interval rhs)
{
 // Handle zero multipliers (e.g. 0D + X = X)
 if Multiplier (lhs) = 0 then return (rhs);
 if Multiplier (rhs) = 0 then return (lhs);

 // If the periods are the same combine the multipliers
 if period (lhs) = Period (rhs) then
 return Interval (Multiplier (lhs) + Multipler (rhs), Period (lhs));

 // If the periods differ try and use the identities
 if Period (lhs) = DAY and Period (rhs) = WEEK then
 return Interval (Multiplier (lhs) + 7 * Multiplier (rhs), DAY);
 if Period (lhs) = WEEK and Period (rhs) = DAY then
 return Interval (7 * Multiplier (lhs) + Multiplier (rhs), DAY);
 if Period (lhs) = MONTH and Period (rhs) = YEAR then
 return Interval (Multiplier (lhs) + 12 * Multiplier (rhs), MONTH);
 if Period (lhs) = YEAR and Period (rhs) = MONTH then
 return Interval (12 * Multiplier (lhs) + Multiplier (rhs), MONTH);

 // Otherwise its an invalid combination
 error “Invalid period combination”;
}

Note that this function only allows intervals defined on a similar basis to be combined (unless one has a multiplier of zero). It does not normally allow day and month based periods to be combined (e.g. you cannot calculate 1D + 1M or 1Y + 1W).

Dividing a Period by Intervals
Some of the product validation rules require that the time period between two dates can be exactly divided by a whole number of intervals as illustrated below.

[image: image2.emf]

Time

Start Date End Date Interval

Using the functions expressed so far in the document a test for this situation can be coded as shown below.
boolean function DividesDates (Date startDate, Date endDate, Interval interval,
 RollConvention rollConvention)
{

 Date date = startDate;

 do {
 date := AddInterval (date, interval, rollConvention);
 } while (date <= endDate)

 return (date = endDate);
}
This algorithm simply works out successive intermediate dates until the end date is reached or exceeded. (It would be equally easy to start at the end date and work backwards to the start). The start and end dates as well as the interval are assumed to be consistent with the roll convention.
The algorithm will not work for special intervals, such as 1 T(ERM) nor will it work with complex roll conventions such as ‘FRN’ in which business day calendars are also required.
Schedules

The definition of many financial products includes schedules of regularly occurring dates on which some action such as observing a rate, calculating an interest rate or making a payment must be performed. Such a schedule is normally defined in terms of a start date, an end date, a period frequency (i.e. an interval like 1 month, 3 months, etc.) and a date roll convention.

The start and end date define the time duration over which the schedule comprises a set of regular periods.

[image: image3.wmf]

Time

Start

Date

End

Date

Regular

Periods

These periods are ‘regular’ because they match the schedule definition in terms of period duration and date roll convention. They do not have to contain the same number of days. For example a schedule of monthly payments occurring on the first of each month could contain periods of 28, 29, 30 and 31 days duration depending on the date range it covers.

All period start and end dates must consistent with date roll convention which can take several different forms, namely:

· A day of the month number (1-30)

The date must fall on the specific day of the month. If the month is shorter than the day of month number then the calculated date rolls to the last day in the month. For example if the roll convention is 30 and we are calculating a date for February then the result will be 28 or 29 (in a leap year).

· End of the month

The date must fall on the last day of the month.

· A day of the week

The date must fall on a specific day of the week (e.g. Monday, Tuesday, etc.).

· Market Settlement dates

The calculated date must be adjusted to match established settlement dates:

· IMM
· IMMCAD
· IMMAUD
· IMMNZD
· SFE
· TBILL
· Floating Rate Note (FRN)

Rolls days are determined according to the FRN Convention or Eurodollar Convention.

· None

If the period frequency is daily or the schedule consists of only a single term then no roll convention adjust can be made.

For example if the roll convention is 15 then all the start and end dates of all the regular periods in the schedule must fall on the 15th of month.
An ‘end of month’ or ‘day of the month’ number roll convention implies that the period frequency is expressed in months or years.
For brevity the algorithms in this paper do not handle match market settlement dates or the FRN convention because of their complexity.

Stub Periods

It is not uncommon to find that the start or end of the schedule is irregular compared with the intermediate periods, either longer or shorter. Such ‘stub’ periods or often used to make the intermediate periods fall on a more convenient set of dates (i.e. the first of the month, first day in the quarter, etc.) than would be obtained by starting directly on the trade’s effective date.

When a stub period occurs in a schedule an additional date needs to be specified to indicate then the regular periods within the schedule begin or end as shown in the two following diagrams.

[image: image4.wmf]

Time

Start

Date

End

Date

Regular

Periods

First

Regular

Period

Start

Date

[image: image5.wmf]

Time

Start

Date

End

Date

Regular

Periods

Last

Regular

Period

End

Date

If required a schedule can have both an initial and final stub period as shown below in which case two additional dates will be specified.

[image: image6.wmf]

Time

Start

Date

End

Date

Regular

Periods

Last

Regular

Period

End

Date

First

Regular

Period

Start

Date

Calculating Unadjusted Schedule Dates

Given the definitions in the preceding sections it is possible to describe how to take the dates defining the start and end of a schedule, its regular period, the period duration and the date roll convention and calculate the period start and end dates.
The following algorithms assume the presence of a data structure, DateList, that can store the dates as they produced. For most applications having the calculation results ordered (regardless of the order they are added to the collection) would be useful.
Both of the algorithms for start by determining the start and end dates for the regular part of the schedule while at the same time recording and dates related to initial or final stub periods. The remainder of the function iterates over the regular periods recording the desired date.
The following algorithm calculates a set of period effectiveDate (including those for any stub periods present).
DateList function PeriodStartDates (
 Date effectiveDate, Date firstRegularPeriodStartDate,
 Date lastRegularPeriodEndDate, Date terminationDate,
 Interval period, DateRollConvention convention)
{
 DateList dates := new DateList ();
 Date regularPeriodStartDate;
 Date regularPeriodEndDate;

 // Is there an initial stub? If so record its start date
 if exists (firstRegularPeriodStartDate) {
 dates.Add (startDate);
 regularPeriodStartDate := firstRegularPeriodStartDate;
 }
 else
 regularPeriodStartDate := effectiveDate;

 // Is there a final stub? If so record the its start date
 if exists (lastRegularPeriodEndDate) {
 dates.Add (lastRegularPeriodEndDate);
 regularPeriodEndDate := lastRegularPeriodEndDate;
 }
 else
 regularPeriodEndDate := terminationDate;

 // Interate over the regular periods
 Date date = regularPeriodStartDate;
 while date < regularPeriodEndDate {
 dates.Add (date);
 date := AddInterval (date, period, convention);
 }

 return dates;
}
The following performs a similar process for the period end dates.
DateList function PeriodEndDates (
 Date effectiveDate, Date firstRegularPeriodStartDate,
 Date lastRegularPeriodEndDate, Date termination Date,
 Interval period, DateRollConvention convention)
{
 DateList dates := new DateList ();
 Date regularPeriodStartDate;
 Date regularPeriodEndDate;

 // Is there an initial stub? If so record its end date
 if exists (firstRegularPeriodStartDate) {
 dates.Add (firstRegularPeriodStartDate);
 regularPeriodStartDate := firstRegularPeriodStartDate;
 }
 else
 regularPeriodStartDate := effectiveDate;

 // Is there a final stub? If so record the its end date
 if exists (lastRegularPeriodEndDate) {
 dates.Add (terminationDate);
 regularPeriodEndDate := lastRegularPeriodEndDate;
 else
 regularPeriodEndDate := terminationDate;

 // Interate over the regular periods
 Date date := regularPeriodEndDate;
 while date > regularPeriodStartDate {
 dates.Add (date);
 date := SubtractInterval (date, period, convention);
 }

 return dates;
}
Calculations in Validation Rules
This section looks at how the financial date calculations can be used to define operations used in validation rules.
For example rule ird-5 checks that “The frequency in calculationPeriodDates/
calculationPeriodFrequency must be an integer multiple of the frequency in resetDates/resetFrequency.”

To implement this rule a new function is needed that checks if one interval is a multiple of another while taking into account the equivalences described earlier.
boolean function IsMultiple (Interval multiple, Interval unit)
{
 int value := 0;

 // 1T is a positive integer multiple (>= 1) of any frequency
 if (Multiplier (multiple) = 1) && (Period (multiple) = TERM) && (Multiplier (unit) >= 1)
 return true;

 // Any period > 0 is a multiple of 1D
 if (Multiplier (multiple) > 0) && (Multiplier (unit) = 1) && (Period (unit) = DAY)
 return true;

 // Handle 1W = 7D and 1Y = 12M or multiples thereof
 if Period (multiple) = Period (unit)
 value := Multiplier (multiple);
 else if (Period (multiple) = WEEK) && (Period (unit) = DAY)
 value := 7 * Multiplier (multiple);
 else if (Period (multiple) = YEAR) && (Period (unit) = MONTH)
 value := 12 * Multiplier (multiple);
 else
 // Otherwise its an invalid combination
 error “Invalid period combination”;

 return ((value / Multiplier (unit)) >= 1) && ((value % Multiplier (unit)) = 0);
}

The rule ird-51 checks that “The dates in calculationPeriodAmount/calculation/
notionalSchedule/fixedRateSchedule/step/stepDate must be unadjusted calculation period dates in the schedule implied by calculationPeriodDates.”
To implement this rule we need a list of the intermediate dates (e.g. those that are end of one period and the start of the next) within the schedule against which the step dates can be checked.
DateList function IntermediateDates (
 Date effectiveDate, Date firstRegularPeriodStartDate,
 Date lastRegularPeriodEndDate, Date termination Date,
 Interval period, DateRollConvention convention)
{
 DateList dates := new DateList ();
 Date regularPeriodStartDate;
 Date regularPeriodEndDate;

 // If the schedule has an initial stub the firstRegularPeriodStartDate is
 // an intermediate date.
 if exists (firstRegularPeriodStartDate) {
 dates.Add (firstRegularPeriodStartDate);
 regularPeriodStartDate := firstRegularPeriodStartDate;
 }
 else
 regularPeriodStartDate := effectiveDate;

 // If the schedule has a final stub the lastRegularPeriodEndDate is
 // an intermediate date.
 if exists (lastRegularPeriodEndDate) {
 dates.Add (lastRegularPeriodEndDate);
 regularPeriodEndDate := lastRegularPeriodEndDate;
 else
 regularPeriodEndDate := terminationDate;

 // Calculate the end date of the first regular period
 Date date := AddInterval (regularPeriodStartDate, period, convention);

 // If its an intermediate date record it and try for another
 while date < regularPeriodEndDate {
 dates.Add (date);
 date := AddInterval (date, period, convention);
 }

 return dates;
}
� See �HYPERLINK "http://www.w3.org/TR/xmlschema-2/" \l "date"�http://www.w3.org/TR/xmlschema-2/#date�

� See �HYPERLINK "http://en.wikipedia.org/wiki/Julian_day"�http://en.wikipedia.org/wiki/Julian_day�

� See �HYPERLINK "http://www.w3.org/TR/xquery-operators/" \l "durations-dates-times"�http://www.w3.org/TR/xquery-operators/#durations-dates-times�

� See �HYPERLINK "http://www.w3.org/TR/xmlschema-2/" \l "dateTime-order"�http://www.w3.org/TR/xmlschema-2/#dateTime-order�

� A year is a leap year if it is exactly divisible by 4 but is not a multiple of 100 unless it is multiple of 400. For example the year 1900 was not a leap year while 2000 and 1984 were.

� XML schema’s duration type does allow such compound period lengths but does not support financial notions such as TERM. If FpML decides to support compound periods in the future it will have to create its own type to represent them.

� Such calculations are possible but not with the simple definition of interval used by FpML at present.

� The IMM convention implies the dates roll to one of the four annual futures contract dates (e.g. the third Wednesday of March, June, September or December). The IMMCAD, IMMNZD, IMMAUD and SFE conventions roll a date the last trading date of a listed futures contract. The TBILL convention rolls dates according to Treasury Bill Auction dates. FRN convention roll dates can not be derived incrementally.

Copyright © 2009-2011. International Swaps and Derivatives Association, Inc.

_1296634601.doc

Time

Start Date

End Date

Regular�Periods

First

Regular

Period

Start

Date

_1296634603.doc

Time

Start Date

End Date

Regular�Periods

Last

Regular

Period

End

Date

First

Regular

Period

Start

Date

_1351426291.doc

Time

Start Date

End Date

Interval

_1296634602.doc

Time

Start Date

End Date

Regular�Periods

Last

Regular

Period

End

Date

_1296634600.doc

Time

Start Date

End Date

Regular�Periods

