
	

	 1	

Guidelines	on	FpML	to	JSON	Conversion	
FpML	Architecture	Working	Group	–	April	2019	

Contents	
Introduction	...........................................................................................................................................	2	

What	Is	JSON?	....................................................................................................................................	2	

JSON	Schema	......................................................................................................................................	2	

Types	of	Conversion	...............................................................................................................................	2	

Conversion	at	Schema	Level	...............................................................................................................	2	

Conversion	at	Instance	Document	Level	............................................................................................	3	

Converting	from	JSON	back	to	the	FpML	...........................................................................................	3	

Implementation	......................................................................................................................................	3	

Elements	.............................................................................................................................................	4	

Element	with	multiple	element	content	children	..........................................................................	4	

Attributes	...........................................................................................................................................	5	

Element	with	multiple	attributes	and	element	content	.................................................................	5	

Element	with	only	a	single	attribute	..............................................................................................	6	

Element	with	an	attribute	and	a	value	...........................................................................................	6	

Element	with	an	attribute	and	element	content	...........................................................................	7	

Default	attributes	...........................................................................................................................	7	

FpML	Implications	..............................................................................................................................	7	

Data	types	..........................................................................................................................................	9	

Numbers	.........................................................................................................................................	9	

Strings	.............................................................................................................................................	9	

Booleans	.........................................................................................................................................	9	

Empty	Entities	in	XML	...................................................................................................................	10	

xsd:any	.........................................................................................................................................	11	

Conclusion	............................................................................................................................................	11	

	

	 	



	

	 2	

Introduction	
Recently,	we	have	seen	an	increased	use	of	JavaScript	Object	Notation	(JSON)	encoding	based	on	
FpML	models.	The	purpose	of	this	document	is	to	provide	mapping	guidelines	for	the	conversion	of	
FpML	messages	to	JSON.		The	paper	considers	JSON	versus	JSON	schema,	the	practicality	of	a	round	
trip	conversion,	and	provides	an	initial	set	of	guidelines.	The	FpML	Architecture	Working	Group	
(AWG)	is	developing	a	JSON	reference	implementation	based	on	these	guidelines.	

The	AWG	encourages	continued	feedback	on	the	paper	and	the	principles	laid	out.	Comments	can	
be	sent	to:	archwgchair@fpml.org	

What	Is	JSON?	
JavaScript	Object	Notation	or	JSON	is	an	open-standard	file	format,	commonly	used	
for	asynchronous	browser–server	communication.	JSON	is	a	language-independent	data	format.	It	
was	originally	derived	from	JavaScript,	and	is	syntactically	equivalent	to	a	subset	of	JavaScript,	but	is	
now	supported	by	many	programming	languages.	It	provides	an	acceptable	performance	for	single	
human	to	server	interaction	and	it	reduces	development	efforts	as	it	is	simpler	and	consumes	fewer	
resources	to	parse	than	XML.		

JSON	is	self-describing.	Elements	have	readable	names	in	a	JSON	document.	An	external	schema	or	
definitions	in	a	data	dictionary	are	not	required	to	interpret	JSON	encoded	data.	

JSON	format	can	be	parsed	and	encoded	in	virtually	every	programming	language.	The	list	of	
supported	languages	can	be	found	at	www.json.org.	JSON	implementations	operate	within	
JavaScript.	JSON	interacts	well	with	loosely	typed	languages	such	as	Python,	Ruby	and	JavaScript,	
which	have	data	structures	similar	to	JSON	objects.	

JSON	Schema	
There	is	not	yet	an	international	standard	defined	for	JSON	Schema.	JSON	lacks	a	truly	standard	
schema	language	and	support	for	a	diverse	set	of	data	types.	Even	if	a	third	party	JSON	schema	
validator	is	used	to	check	message	content,	additional	coding	is	needed	in	every	implementation	to	
provide	the	same	robustness	as	is	provided	by	XML	Schema	validation.	

Types	of	Conversion	

Conversion	at	Schema	Level	
Although	there	is	not	yet	an	agreed	JSON	schema	standard,	one	potential	alternative	to	consider	is	
the	conversion	between	XML	Schema	and	JSON	Schema.	However	this	alternative	is	quite	complex	
for	a	number	of	reasons:	

• The	constraints	that	are	defined	by	the	JSON	Schema	are	not	as	complex	as	those	defined	in	
an	XML	Schema.	As	a	result,	a	one-to-one	conversion	is	not	possible	and	the	conversion	
process	needs	to	include	a	simplification	process.	For	example,	the	multiplicity	of	sequences	
or	choices	in	XML	Schema	needs	to	be	translated	into	the	repetition	of	the	actual	contained	
elements	in	JSON.	This	is	not	trivial	in	all	cases.	



	

	 3	

• As	mentioned	in	the	previous	section,	there	is	no	standard	JSON	Schema	so	the	target	for	
the	conversion	is	not	standard,	it	may	change	depending	on	the	JSON	Schema	specification.	

• Bidirectional	transformation	is	a	challenge	as	the	JSON	schema	is	much	simpler	than	the	
XML	schema.	

Conversion	at	Instance	Document	Level	
With	the	previous	comments	in	mind,	the	goal	of	this	document	is	to	encourage	consistency	in	the	
mapping	from	FpML	to	JSON	at	the	instance	document	level,	as	there	does	not	currently	exist	a	
standard	for	XML	to	JSON	conversion.	Different	converters	available	in	the	public	domain	present	
different	outcomes	for	the	same	XML	input	file.		It	is	therefore	needed	to	establish	the	
transformation	convention	for	FpML	to	JSON,	based	on	the	methods	used	by	the	different	JSON	
converters.	The	transformation	conventions	need	to	cater	for	the	special	features	used	by	FpML.	

The	main	advantage	of	mapping	at	the	instance	level	rather	than	schema	conversion	is	simplicity.	In	
the	Implementation	section	we	describe	a	number	of	XML	to	JSON	conversion	rules	that	take	into	
account	FpML-specific	features.		

Converting	from	JSON	back	to	the	FpML	
The	conversion	from	JSON	back	to	the	FpML	is	not	seen	as	a	primary	requirement	by	the	AWG	at	this	
point	in	time,	for	the	reasons	detailed	below:	

• The	main	use	case	is	the	conversion	from	FpML	to	JSON	since	JSON	will	be	used	as	end	point	
format	for	web	services	calls.	

• The	representation	does	not	allow	easy	round	tripping	just	based	on	the	JSON	as	described	
below.	Schema	information	should	be	processed	in	order	to	avoid	losing	information	during	
the	reverse	conversion.		

Even	though	the	conversion	from	JSON	to	the	XML	is	not	a	current	goal,	it	is	possible	to	implement	
such	conversion.	In	order	to	”reverse	convert”	at	the	level	of	the	instance	document,	the	rules	from	
the	guidelines	described	below	in	the	Implementation	section	must	be	followed	but	in	the	opposite	
direction.	

Problems	will	arise,	however,	when	an	XML	schema	has	been	converted	into	JSON	schema	and	the	
JSON	schema	rules	are	subsequently	followed	to	do	a	reverse	conversion	from	JSON	to	XML.	The	
reason	for	the	difficulties	stems	from	the	fact	that	XML	Schema	is	richer	than	JSON	Schema,	e.g.	
when	defining	constraints	such	as	the	multiplicity	of	the	elements,	patterns,	and	sequences	and	
choices.		

Implementation	
In	this	section	we	describe	how	the	different	XML	structures	FpML	is	using,	are	transformed	to	JSON.	
The	conventions	will	be	applied	to	components	such	as	attributes	and	elements	parts	as	names	and	
values,	element	repetitions,	optional/multiple/mandatory	choices/sequences	and	patterns.	Note:	
Even	if	the	data	order	cannot	be	maintained	in	the	JSON	message,	the	conversion	tries	to	maintain	
the	order	of	the	FpML	to	facilitate	a	reverse	conversion.	



	

	 4	

Elements	
The	element	names	will	be	kept	when	the	message	is	converted	to	JSON.	They	form	part	of	the	
name	of	the	JSON	object.	Depending	on	the	configuration	these	elements	have	inside	an	XML	
message,	the	conversion	might	differ	as	follows:	

Element	with	multiple	element	content	children	
In	this	instance	the	elements’	children	will	be	converted	into	JSON	as	an	array	constituted	of	the	pair	
of	the	element	name.	At	this	point	it	is	important	to	distinguish	between	the	possible	content	of	the	
element	children	for	the	construction	of	the	array.	

Repeating	Elements	
If	the	same	name	element	is	repeated	under	the	same	structure	in	the	same	position	multiple	times,	
this	will	be	converted	to	a	JSON	array	using	square	brackets.	The	name	of	the	pair	will	be	the	name	
of	the	element	and	the	value	of	the	pair	will	be	the	array	in	square	brackets,	separating	every	object	
inside	by	a	comma.	An	example	is	the	<partyTradeIdentifier>	element	that	may	be	repeated	twice	
under	<tradeHeader>	element.	It	would	be	translated	into	a	<partyTradeIdentifier>	array	with	two	
objects:	

    <tradeHeader> 
      <partyTradeIdentifier> 
        <partyReference href="party1" /> 
        <tradeId tradeIdScheme="http://www.partyA.com/swaps/trade-id">TW9235</tradeId> 
      </partyTradeIdentifier> 
      <partyTradeIdentifier> 
        <partyReference href="party2" /> 
        <tradeId tradeIdScheme="http://www.barclays.com/swaps/trade-id">SW2000</tradeId> 
      </partyTradeIdentifier> 
...	

"tradeHeader": { 
            "partyTradeIdentifier": [ 
                { 
                    "partyReference": {"href": "party1"}, 
                    "tradeId": { 
                        "tradeIdScheme": "http://www.partyA.com/swaps/trade-id", 
                        "value": "TW9235" 
                    } 
                }, 
                { 
                    "partyReference": {"href": "party2"}, 
                    "tradeId": { 
                        "tradeIdScheme": "http://www.barclays.com/swaps/trade-id", 
                        "value": "SW2000" 
                    } 
                } 
            ], 



	

	 5	

	
Non-Repeating	Elements	
If	the	elements	are	non-repeating,	an	enclosing	with	brackets	is	used	for	the	children,	maintaining	
the	same-level	children	inside	these	brackets,	and	the	children	of	the	children	in	a	new	object	
between	brackets.	As	an	example,	see	the	below	representation	of		<effectiveDate>,	with	children	
elements	<unadjustedDate>	and	<dateAdjustments>	at	the	same	level.	<dateAdjustments>	further	
contains	<businessDayConvention>:	

	

          <effectiveDate> 
            <unadjustedDate>1994-12-23</unadjustedDate> 
            <dateAdjustments> 
              <businessDayConvention>FOLLOWING</businessDayConvention> 
            </dateAdjustments> 
          </effectiveDate> 
	

"effectiveDate": { 
                        "unadjustedDate": "1994-12-23", 
                        "dateAdjustments": {"businessDayConvention": "FOLLOWING"} 
                    }, 

Attributes	
When	converting	attributes	found	in	the	XML	elements,	the	attribute	name	has	to	be	kept	when	the	
message	is	converted	to	JSON.	There	are	different	configurations	depending	on	the	number	of	
attributes	and	on	whether	the	element	contains	other	elements.	The	following	principles	apply	for	
the	conversion.	

Element	with	multiple	attributes	and	element	content	
If	an	element	contains	multiple	attributes	plus	other	elements	inside,	the	attributes	are	inside	the	
object	of	the	element	in	JSON,	forming	part	of	the	sublist	of	the	"element"	name,	at	the	same	level	
as	its	child	element.	For	example,	the	FpML	root	element	would	be	converted	in	the	following	way:	

<dataDocument xmlns="http://www.fpml.org/FpML-5/confirmation" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" fpmlVersion="5-10" 
xsi:schemaLocation="http://www.fpml.org/FpML-5/confirmation ../../fpml-main-5-10.xsd 
http://www.w3.org/2000/09/xmldsig# ../../xmldsig-core-schema.xsd"> 
  <trade> 
...	

{"dataDocument": { 
    "xmlns": "http://www.fpml.org/FpML-5/confirmation", 
    "xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance", 
    "fpmlVersion": "5-10", 
    "xsi:schemaLocation": "http://www.fpml.org/FpML-5/confirmation ../../fpml-main-5-10.xsd 
http://www.w3.org/2000/09/xmldsig# ../../xmldsig-core-schema.xsd", 
    "trade": { 



	

	 6	

...	

Element	with	only	a	single	attribute	
If	an	element	contains	only	one	attribute,	the	element	"name"	contains	the	object	formed	by	the	
'name:value'	pair	of	the	attribute.	For	example,	FpML	party	references	illustrated	below	would	be	
converted	in	the	following	way:	

<payerPartyReference href="party1" /> 
	

"partyReference": {"href": "party1"}, 
	

Element	with	an	attribute	and	a	value	
If	an	element	contains	an	attribute	and	a	value,	the	element	"name"	contains	a	new	object	formed	
by	the	'name:value'	pair	of	the	attribute	and	another	pair	which	has	"value"	as	the	object	name	and	
the	value	of	the	element	as	its	pair.	For	example,	FpML	identification	elements	with	a	scheme	
attribute,	such	as	the	trade	ID	that	follows	the	below	syntax	would	be	converted	to:	

<tradeId tradeIdScheme="http://www.partyA.com/swaps/trade-id">TW9235</tradeId> 
	

"tradeId": { 
                        "tradeIdScheme": "http://www.partyA.com/swaps/trade-id", 
                        "value": "TW9235" 
                    } 
 

Exception:	Optional	Coding	Schemes	Attributes	
In	the	case	an	element	has	in	its	definition	an	optional	coding	scheme	attribute,	the	conversion	must	
show	the	value	of	the	element,	not	as	a	pair	value	of	the	element	tag,	but	as	a	new	object	with	a	pair	
with	“value”	as	tag	name	and	the	value	of	the	element	as	its	pair.	One	example	of	this	case	would	be	
the	element	<businessCenter>	of	complexType	“BusinessCenter”	which	has	an	optional	attribute	
“businessCenterScheme”,	that	would	be	converted	like:	

<businessCenter businessCenterScheme="http://www.fpml.org/coding-scheme/business-
center">USNY</businessCenter>	
	
{ 
    "businessCenter": { 
        "businessCenterScheme": "http://www.fpml.org/coding-scheme/business-center", 
        "value": "USNY" 
    } 
} 
	

<businessCenter>USNY</businessCenter>	
	
{ 
    "businessCenter": { 



	

	 7	

        "value": "USNY" 
    } 
} 
	

Element	with	an	attribute	and	element	content	
If	an	element	contains	an	attribute	plus	elements	inside,	the	attribute	would	be	inside	the	object	of	
the	element	in	JSON,	forming	part	of	the	sublist	of	the	"element"	name,	at	the	same	level	as	its	
element	children.	For	example,	the	<calculationPeriodDates>	element	would	be	converted	in	the	
following	way:	

<calculationPeriodDates id="floatingCalcPeriodDates"> 
          <effectiveDate> 
 
                "calculationPeriodDates": { 
                    "id": "floatingCalcPeriodDates", 
                    "effectiveDate": { 
	

Default	attributes	
The	W3C	XML	Schema	allows	the	possibility	of	defining	a	default	value	for	each	attribute.	FpML	uses	
this	feature	within	the	definition	of	the	coding	scheme	types.	When	FpML	defines	a	standard	URI	for	
a	coding	scheme,	then	its	scheme	attribute	has	a	default	value	that	may	be	overridden	in	the	
instance	document.	

However,	FpML	producers	may	decide	not	to	populate	optional	scheme	attributes	in	the	instance	
documents	since	this	information	may	be	defined	in	a	specification	outside	the	xml.	This	decision	has	
the	objective,	most	of	the	times,	to	simplify	and	reduce	the	size	of	the	instance	documents.	

Regarding	the	conversion	to	JSON,	the	AWG	decided	that	default	attributes	should	not	appear	in	the	
resulting	JSON	if	they	don’t	appear	in	the	original	XML.	The	JSON	should	not	be	enriched	in	the	
conversion	process	and	it	should	contain	only	the	attributes	that	appear	in	the	original	XML.	

	

FpML	Implications	
There	are	certain	characteristics	of	arrays	that	need	to	be	taken	into	account	when	converting	from	
FpML.	Specifically,	in	cases	where	elements	can	either	contain	arrays	of	objects	under	them	or	zero	
or	one-element	arrays.	An	example	is	the	<swapStream>	within	the	<swap>	structure	where	
<swapStream>	can	be	repeated	one	or	more	times.	If		<swapStream>	appears	more	than	once,	
following	previous	arrays	guidelines,	then	the	conversion	will	be	fine,	with	the	object	pair	of	name	
<swapStream>	and	value	an	array	of	the	different	<swapStream>	children	structures:	

    <swap> 
      <swapStream> 
        <payerPartyReference href="party1" /> 
...	



	

	 8	

      </swapStream> 
      <swapStream id="swap_fixed"> 
        <payerPartyReference href="party2" /> 
...	

      </swapStream> 
    </swap> 
 
"swap": {"swapStream": [ 
            { 
                "payerPartyReference": {"href": "party1"}, 
...  
            }, 
            { 
                "id": "swap_fixed", 
                "payerPartyReference": {"href": "party2"}, 

...  
            } 
        ]} 

	

But,	as	commented	before,	if	it	is	found	that	the	<swap>	structure	in	the	XML	only	contains	one	
<swapStream>	element,	then	the	array	structure	should	be	maintained,	even	with	only	one	element	
in	the	array.		

    <swap> 
      <swapStream> 
        <payerPartyReference href="party1" /> 
...		

      </swapStream> 
    </swap> 
	

"swap": {"swapStream": [ 
            { 
                "payerPartyReference": {"href": "party1"}, 
...  
            } 
        ]}	

Existing	conversion	tools	take	the	only	element	in	the	array	as	a	sub-object	of	the	main	object.	

It	is	not	possible	to	know	from	a	single	XML	instance	document	how	many	times	an	element	can	
appear	within	another	element,	hence	the	knowledge	from	a	XSD	schema	is	required.		If	an	element	
can	appear	more	than	once	according	to	the	XSD	schema,	this	element	will	be	converted	as	an	array,	
even	when	it	only	appears	once	in	the	instance	document.		



	

	 9	

The	structure	of	the	resulting	JSON	message	will	be	the	same	irrespective	of	whether	an	element	
appears	once	or	more.	Example	showed,	<swapStream>	in	the	context	of	<swap>	would	always	
appear	as	an	array	object	in	the	JSON	message,	irrespective	of	whether	there	is	more	than	one	
object	<swapStream>.	

	

Data	types	
In	JSON,	the	types	used	for	data	are	numbers,	Booleans,	and	strings.	The	types	are	easily	identifiable	
in	JSON.	Differentiation	can	also	be	made	between	empty	objects,	empty	strings	and	nulls.	This	is	
contrary	to	XML	where	data	types	are	not	distinguished	by	just	looking	at	the	instance	document	
and	the	XML	Schema	Definitions	(XSDs)	are	needed	to	determine	them.	As	a	result,	the	XML	Schema	
(XSDs)	is	needed	as	input	for	a	correct	conversion	process	from	XML	data	to	JSON	language.	

Numbers	
Numbers	are	typed	without	quotes	("")	as	a	pair	value	in	JSON.	Because	in	XML	numbers	are	not	
distinguished	from	strings,	we	need	to	be	aware	of	the	type	definition	in	XML	Schema	before	
converting	to	JSON.	One	example	of	number	field	in	FpML	is	the	field	<periodMultiplier>,	which	will	
be	always	converted	to	JSON	number	data	type:	

<periodMultiplier>6</periodMultiplier>	
	
"periodMultiplier": 6 
 
Current	implementations	of	JSON	parsing	libraries	limit	the	precision	of	the	JSON	numeric	type.	The	
JSON	numeric	is	more	restrictive	than	the	XML	decimal	type.	That	means	that	for	very	big	numbers	
or	numbers	with	lots	of	decimal	digits,	the	conversion	from	XML	to	JSON	could	lose	precision.	
However	though	the	AWG	is	aware	of	this	issue,	decided	that	it	is	important	to	keep	as	much	as	
possible	the	type	of	the	original	data	source	to	avoid	losing	type	information	in	the	conversion	
process.	As	consequence,	FpML	decimal	elements	should	be	converted	to	JSON	numbers.	The	AWG	
welcomes	feedback	on	this	approach	from	the	FpML	user	community	in	order	to	evaluate	its	impact.	

Strings	
Most	of	the	data	types	used	in	XML	will	be	typed	in	JSON	as	a	string	(date,	token,	ID,	string).	These	
are	typed	in	JSON	within	quotes	("").	Awareness	of	the	XML	data	type,	defined	in	the	schema,	is	also	
needed	for	a	correct	conversion	of	strings.		

An	example	of	string	field	is	'Period'	which	contains	token	XML	field:	

<period>M</period>	
	
"period": "M" 
	

Booleans	
Booleans	are	typed	as	'true'	or	'false'	without	quotes	in	JSON.	Awareness	is	needed	when	XML	is	
converted	to	avoid	putting	them	between	quotes,	which	would	be	a	string.	Also	sometimes	in	XML	



	

	 10	

the	Boolean	type	can	be	filled	up	with	numbers,	so	awareness	is	needed	for	a	correct	conversion	to	
JSON.	

<initialExchange>true</initialExchange>	
	
"initialExchange": true 
	

Empty	Entities	in	XML	
In	JSON	it	is	possible	to	have	empty	strings,	empty	objects	and	nulls.	However	they	will	look	exactly	
the	same	in	XML,	with	nothing	between	the	tags.	It	is	important	to	be	aware	of	this	fact,	since	in	
FpML	there	are	a	number	of	empty	elements	in	the	schema.	In	most	cases,	in	FpML,	if	the	element	
does	not	exist,	it	does	not	appear	in	the	message.	An	example	of	an	empty	element	in	XML	and	its	
possible	conversions	to	JSON	instances,	depending	on	what	is	the	represented	content:	

XML:	
<EmptyObjectOrEmptyStringOrNull></EmptyObjectOrEmptyStringOrNull>	
	
JSON:	
"EmptyObject": {}, 
"EmptyString": "",  
"Null": null 
	

The	conversion	from	an	FpML	empty	element	WITH	attributes	will	not	generate	empty	quotes	for	
the	content	of	the	element.	For	example:	

XML:	
<partyReference href=”party1”/> 
	
JSON:	
"partyReference":{"href":"party1"},	
	

On	the	other	hand,	there	are	different	use	cases	for	the	conversion	from	an	empty	FpML	element	
WITHOUT	attributes	to	JSON:	

§ An	element	which	can	hold	a	string	value	but	which	is	currently	empty	should	map	to	an	
empty	string	""	

o XML:	

§ <partyName/> 

o JSON:	

§ "partyName": { 
        "value": "" 
    } 



	

	 11	

§ An	element	which	can	hold	a	number	or	boolean	value	but	which	is	currently	empty	should	
map	to	a	JSON	null	

o XML:	

§ <amount/> 

o JSON:	

§ "amount": null 

§ An	element	of	a	type	that	cannot	hold	any	content	(e.g.	derived	from	FpML’s	Empty)	should	
map	to	an	empty	object	{}		

o XML:	

§ <nonReliance/> 
o JSON:	

§ "nonReliance": {}, 

xsd:any	
Even	though	the	use	of	xsd:any	in	FpML	is	limited	to	the	definition	of	the	math	component	within	
the	interest	rate	and	equity	product	streams,	it	constitutes	an	issue	in	terms	of	JSON	conversion	
since	there	is	no	schema	definition	to	support	its	content.	For	this	particular	situation,	the	AWG	
decided	that	the	FpML	to	JSON	conversion	should	implement	a	"best	of	possible"	conversion	
approach.	This	means	a	generic	XML	to	JSON	conversion	without	taking	any	schema	information.	

	

Conclusion	
With	the	implementation	issues	described	above,	the	main	conclusion	is	that	to	make	a	proper	
conversion	from	FpML	to	JSON,	the	FpML	Schema	has	to	be	considered.	The	FpML	message	does	not	
contain	sufficient	information	to	define	the	proper	types	in	JSON	in	all	cases.	In	addition,	the	
examples	have	shown	that	special	attention	is	needed	in	certain	cases	to	avoid	a	selection	of	
incorrect	JSON	data	types.		

To	transpose	the	maximum	amount	of	information	to	the	JSON	message,	the	data	types	must	be	
converted	as	advised	in	the	previous	guidelines.	As	we	have	seen	with	array	elements,	it	is	not	in	all	
cases	possible	to	convert	data	types	correctly	from	the	XML	message	without	considering	XML	
Schema	information.	

	


